RabbitMQ幂等性与优先级及惰性详细全面讲解

 更新时间:2022年11月29日 17:11:09   作者:Jm呀  
关于MQ消费者的幂等性问题,在于MQ的重试机制,因为网络原因或客户端延迟消费导致重复消费。使用MQ重试机制需要注意的事项以及如何解决消费者幂等性与优先级及惰性问题以下将逐一讲解

1. 幂等性

概念

用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。 举个最简单的例子,那就是支付,用户购买商品后支付,支付扣款成功,但是返回结果的时候网络异常, 此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款,返回结果成功,用户查询余额发现多扣钱 了,流水记录也变成了两条。在以前的单应用系统中,我们只需要把数据操作放入事务中即可,发生错误立即回滚,但是再响应客户端的时候也有可能出现网络中断或者异常等等

消息重复消费

消费者在消费 MQ 中的消息时,MQ 已把消息发送给消费者,消费者在给 MQ 返回 ack 时网络中断, 故 MQ 未收到确认信息,该条消息会重新发给其他的消费者,或者在网络重连后再次发送给该消费者,但实际上该消费者已成功消费了该条消息,造成消费者消费了重复的消息。

解决思路

MQ 消费者的幂等性的解决一般使用全局 ID 或者写个唯一标识比如时间戳 或者 UUID 或者订单消费者消费 MQ 中的消息也可利用 MQ 的该 id 来判断,或者可按自己的规则生成一个全局唯一 id,每次消费消息时用该 id 先判断该消息是否已消费过。

消费端的幂等性保障

在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性, 这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。

业界主流的幂等性有两种操作:a. 唯一 ID+指纹码机制,利用数据库主键去重, b.利用 redis 的原子性去实现

唯一ID+指纹码机制

指纹码:我们的一些规则或者时间戳加别的服务给到的唯一信息码,它并不一定是我们系统生成的,基本都是由我们的业务规则拼接而来,但是一定要保证唯一性,然后就利用查询语句进行判断这个 id 是否存在数据库中,优势就是实现简单就一个拼接,然后查询判断是否重复;劣势就是在高并发时,如果是单个数据库就会有写入性能瓶颈当然也可以采用分库分表提升性能,但也不是我们最推荐的方式。

note Redis 原子性

利用 redis 执行 setnx 命令,天然具有幂等性。从而实现不重复消费

2. 优先级队列

使用场景

在我们系统中有一个订单催付的场景,我们的客户在天猫下的订单,淘宝会及时将订单推送给我们,如果在用户设定的时间内未付款那么就会给用户推送一条短信提醒,很简单的一个功能对吧。

但是,tmall 商家对我们来说,肯定是要分大客户和小客户的对吧,比如像苹果,小米这样大商家一年起码能给我们创造很大的利润,所以理应当然,他们的订单必须得到优先处理,而曾经我们的后端系统是使用 redis 来存放的定时轮询,大家都知道 redis 只能用 List 做一个简简单单的消息队列,并不能实现一个优先级的场景,所以订单量大了后采用 RabbitMQ 进行改造和优化,如果发现是大客户的订单给一个相对比较高的优先级, 否则就是默认优先级。

如何添加?

控制台页面添加

队列中代码添加优先级

Map<String, Object> params = new HashMap();
params.put("x-max-priority", 10);
channel.queueDeclare("hello", true, false, false, params);

消息中代码添加优先级

AMQP.BasicProperties properties = new AMQP.BasicProperties().builder().priority(10).build();

注意事项:

要让队列实现优先级需要做的事情有如下事情:队列需要设置为优先级队列,消息需要设置消息的优先级,消费者需要等待消息已经发送到队列中才去消费因为,这样才有机会对消息进行排序

实战

生产者:

package com.jm.rabbitmq.one;
import com.rabbitmq.client.AMQP;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import java.util.HashMap;
import java.util.Map;
/**
 * 生产者 :发消息
 */
public class Producer {
    //队列名称
    public static final String QUEUE_NAME="hello";
    //发消息
    public static void main(String[] args) throws Exception {
		Channel channel = RabbitMqUtils.getChannel();
        Map<String, Object> arguments=new HashMap<>();
        arguments.put("x-max-priority",10);//官方允许0-255 此处设置10 允许优先级范围为0-10 不要设置过大,浪费cpu和内存
        channel.queueDeclare(QUEUE_NAME,true,false,false,arguments);
        for (int i = 1; i < 11; i++) {
            String message="info"+i;
            if(i==5){
                AMQP.BasicProperties properties=
                        new AMQP.BasicProperties().builder().priority(5).build();
                channel.basicPublish("",QUEUE_NAME,properties,message.getBytes());
            }else{
                channel.basicPublish("",QUEUE_NAME,null,message.getBytes());
            }
        }
        System.out.println("消息发送完毕");
    }
}

消费者:

package com.jm.rabbitmq.one;
import com.rabbitmq.client.*;
/**
 * 消费者 :接收消息的
 */
public class Consumer {
    //队列的名称
    public static final String QUEUE_NAME="hello";
    //接收消息
    public static void main(String[] args) throws Exception{
		Channel channel = RabbitMqUtils.getChannel();
        //声明 接收消息
        DeliverCallback deliverCallback= (consumerTag,message) ->{
            System.out.println(new String(message.getBody()));
        };
        //取消消息时的回调
        CancelCallback cancelCallback= consumerTag ->{
            System.out.println("消息消费被中断");
        };
        channel.basicConsume(QUEUE_NAME,true,deliverCallback,cancelCallback);
    }
}

3. 惰性队列

使用场景

RabbitMQ 从 3.6.0 版本开始引入了惰性队列的概念。惰性队列会尽可能的将消息存入磁盘中,而在消费者消费到相应的消息时才会被加载到内存中,它的一个重要的设计目标是能够支持更长的队列,即支持更多的消息存储。当消费者由于各种各样的原因(比如消费者下线、宕机亦或者是由于维护而关闭等)而致使长时间内不能消费消息造成堆积时,惰性队列就很有必要了。

默认情况下,当生产者将消息发送到 RabbitMQ 的时候,队列中的消息会尽可能的存储在内存之中, 这样可以更加快速的将消息发送给消费者。即使是持久化的消息,在被写入磁盘的同时也会在内存中驻留一份备份。当RabbitMQ 需要释放内存的时候,会将内存中的消息换页至磁盘中,这个操作会耗费较长的时间,也会阻塞队列的操作,进而无法接收新的消息。虽然 RabbitMQ 的开发者们一直在升级相关的算法, 但是效果始终不太理想,尤其是在消息量特别大的时候。

两种模式

队列具备两种模式:default 和 lazy。默认的为default 模式,在3.6.0 之前的版本无需做任何变更。lazy 模式即为惰性队列的模式,可以通过调用 channel.queueDeclare 方法的时候在参数中设置,也可以通过 Policy 的方式设置,如果一个队列同时使用这两种方式设置的话,那么 Policy 的方式具备更高的优先级。 如果要通过声明的方式改变已有队列的模式的话,那么只能先删除队列,然后再重新声明一个新的。

在队列声明的时候可以通过“x-queue-mode”参数来设置队列的模式,取值为“default”和“lazy”。下面示例中演示了一个惰性队列的声明细节:

Map<String, Object> args = new HashMap<String, Object>();
args.put("x-queue-mode", "lazy");
channel.queueDeclare("myqueue", false, false, false, args);

内存开销对比

在发送 1 百万条消息,每条消息大概占 1KB 的情况下,普通队列占用内存是 1.2GB,而惰性队列仅仅 占用 1.5MB

到此这篇关于RabbitMQ幂等性与优先级及惰性详细全面讲解的文章就介绍到这了,更多相关RabbitMQ幂等性内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Spring Cloud Gateway 服务网关的部署与使用详细讲解

    Spring Cloud Gateway 服务网关的部署与使用详细讲解

    这篇文章主要介绍了Spring Cloud Gateway 服务网关的部署与使用详细介绍,本文给大家讲解的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-04-04
  • java高级用法之JNA中使用类型映射

    java高级用法之JNA中使用类型映射

    JNA中有很多种映射,本文主要介绍了java高级用法之JNA中使用类型映射,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-03-03
  • Java结构型模式中的组合模式详解

    Java结构型模式中的组合模式详解

    组合模式,又叫部分整体模式,它创建了对象组的数据结构组合模式使得用户对单个对象和组合对象的访问具有一致性。本文将通过示例为大家详细介绍一下组合模式,需要的可以参考一下
    2023-02-02
  • Java验证日期时间字符串是否合法的三种方式

    Java验证日期时间字符串是否合法的三种方式

    判断日期经常合法出现在IO场景下,下面将尽量使用简练的思路和代码呈现给大伙,这篇文章主要给大家介绍了关于Java验证日期时间字符串是否合法的三种方式,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2023-11-11
  • 浅谈Spring Bean的基本配置

    浅谈Spring Bean的基本配置

    这篇文章主要介绍了浅谈Spring Bean的基本配置,文中有非常详细的代码示例,对正在学习java Spring的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-05-05
  • 详解Spring Boot 异步执行方法

    详解Spring Boot 异步执行方法

    这篇文章主要介绍了Spring Boot 异步执行方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-03-03
  • java算法导论之FloydWarshall算法实现代码

    java算法导论之FloydWarshall算法实现代码

    这篇文章主要介绍了算法导论之FloydWarshall算法实现代码的相关资料,需要的朋友可以参考下
    2017-05-05
  • Spring Boot 项目创建的详细步骤(图文)

    Spring Boot 项目创建的详细步骤(图文)

    这篇文章主要介绍了Spring Boot 项目创建的详细步骤(图文),这里我们有两种创建Spring Boot项目的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-05-05
  • java selenium教程环境搭建基于Maven

    java selenium教程环境搭建基于Maven

    本文主要介绍Java selenium 环境的安装,这里介绍了基于Maven的环境搭建,有需要的小伙伴可以参考下
    2016-08-08
  • Java Chassis3熔断机制的改进路程技术解密

    Java Chassis3熔断机制的改进路程技术解密

    这篇文章主要介绍了Java Chassis 3技术解密之熔断机制的改进路程实例分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01

最新评论