Redisson分布式信号量RSemaphore的使用超详细讲解

 更新时间:2023年02月11日 11:19:18   作者:每天都要进步一点点  
这篇文章主要介绍了Redisson分布式信号量RSemaphore的使用,基于Redis的Redisson的分布式信号量RSemaphore采用了与java.util.concurrent.Semaphore相似的接口和用法

本篇文章基于redisson-3.17.6版本源码进行分析

一、RSemaphore的使用

@Test
public void testRSemaphore() {
    Config config = new Config();
    config.useSingleServer().setAddress("redis://127.0.0.1:6379");
    RedissonClient redissonClient = Redisson.create(config);
    RSemaphore rSemaphore = redissonClient.getSemaphore("semaphore");
    // 设置5个许可,模拟五个停车位
    rSemaphore.trySetPermits(5);
    // 创建10个线程,模拟10辆车过来停车
    for (int i = 1; i <= 10; i++) {
        new Thread(() -> {
            try {
                rSemaphore.acquire();
                System.out.println(Thread.currentThread().getName() + "进入停车场...");
                TimeUnit.MILLISECONDS.sleep(new Random().nextInt(100));
                System.out.println(Thread.currentThread().getName() + "离开停车场...");
                rSemaphore.release();
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }, "A" + i).start();
    }
    try {
        TimeUnit.MINUTES.sleep(1);
    } catch (InterruptedException e) {
        throw new RuntimeException(e);
    }
}

二、RSemaphore设置许可数量

初始化RSemaphore,需要调用trySetPermits()设置许可数量:

/**
 * 尝试设置许可数量,设置成功,返回true,否则返回false
 */
boolean trySetPermits(int permits);

trySetPermits()内部调用了trySetPermitsAsync():

// 异步设置许可
@Override
public RFuture<Boolean> trySetPermitsAsync(int permits) {
    RFuture<Boolean> future = commandExecutor.evalWriteAsync(getRawName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
            // 判断分布式信号量的key是否存在,如果不存在,才设置
            "local value = redis.call('get', KEYS[1]); " +
                    "if (value == false) then "
                    // set "semaphore" permits
                    // 使用String数据结构设置信号量的许可数
                    + "redis.call('set', KEYS[1], ARGV[1]); "
                    // 发布一条消息到redisson_sc:{semaphore}通道
                    + "redis.call('publish', KEYS[2], ARGV[1]); "
                    // 设置成功,返回1
                    + "return 1;"
                    + "end;"
                    // 否则返回0
                    + "return 0;",
            Arrays.asList(getRawName(), getChannelName()), permits);
    if (log.isDebugEnabled()) {
        future.thenAccept(r -> {
            if (r) {
                log.debug("permits set, permits: {}, name: {}", permits, getName());
            } else {
                log.debug("unable to set permits, permits: {}, name: {}", permits, getName());
            }
        });
    }
    return future;
}

可以看到,设置许可数量底层使用LUA脚本,实际上就是使用redis的String数据结构,保存了我们指定的许可数量。如下图:

参数说明:

  • KEYS[1]: 我们指定的分布式信号量key,例如redissonClient.getSemaphore("semaphore")中的"semaphore")
  • KEYS[2]: 释放锁的channel名称,redisson_sc:{分布式信号量key},在本例中,就是redisson_sc:{semaphore}
  • ARGV[1]: 设置的许可数量

总结设置许可执行流程为:

  • get semaphore,获取到semaphore信号量的当前的值
  • 第一次数据为0, 然后使用set semaphore 3,将这个信号量同时能够允许获取锁的客户端的数量设置为3。(注意到,如果之前设置过了信号量,将无法再次设置,直接返回0。想要更改信号量总数可以使用addPermits方法)
  • 然后redis发布一些消息,返回1

三、RSemaphore的加锁流程

许可数量设置好之后,我们就可以调用acquire()方法获取了,如果未传入许可数量,默认获取一个许可。

public void acquire() throws InterruptedException {
    acquire(1);
}
public void acquire(int permits) throws InterruptedException {
    // 尝试获取锁成功,直接返回
    if (tryAcquire(permits)) {
        return;
    }
    // 对于没有获取锁的那些线程,订阅redisson_sc:{分布式信号量key}通道的消息
    CompletableFuture<RedissonLockEntry> future = subscribe();
    semaphorePubSub.timeout(future);
    RedissonLockEntry entry = commandExecutor.getInterrupted(future);
    try {
        // 不断循环尝试获取许可
        while (true) {
            if (tryAcquire(permits)) {
                return;
            }
            entry.getLatch().acquire();
        }
    } finally {
        // 取消订阅
        unsubscribe(entry);
    }
//        get(acquireAsync(permits));
}

可以看到,获取许可的核心逻辑在tryAcquire()方法中,如果tryAcquire()返回true说明获取许可成功,直接返回;如果返回false,说明当前没有许可可以使用,则对于没有获取锁的那些线程,订阅redisson_sc:{分布式信号量key}通道的消息,并通过死循环不断尝试获取锁。

我们看一下tryAcquire()方法的逻辑,内部调用了tryAcquireAsync()方法:

// 异步获取许可
@Override
public RFuture<Boolean> tryAcquireAsync(int permits) {
    if (permits < 0) {
        throw new IllegalArgumentException("Permits amount can't be negative");
    }
    if (permits == 0) {
        return new CompletableFutureWrapper<>(true);
    }
    return commandExecutor.evalWriteAsync(getRawName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
              // 获取当前剩余的许可数量
              "local value = redis.call('get', KEYS[1]); " +
              // 许可不为空,并且许可数量 大于等于 当前线程申请的许可数量        
              "if (value ~= false and tonumber(value) >= tonumber(ARGV[1])) then " +
                  // 通过decrby减少剩余可用许可    
                  "local val = redis.call('decrby', KEYS[1], ARGV[1]); " +
                  // 返回1    
                  "return 1; " +
              "end; " +
              // 其它情况,返回0        
              "return 0;",
              Collections.<Object>singletonList(getRawName()), permits);
}

从源码可以看到,获取许可就是操作redis中的数据,首先获取到redis中剩余的许可数量,只有当剩余的许可数量大于线程申请的许可数量时,才获取成功,返回1;否则获取失败,返回0;

总结加锁执行流程为:

  • get semaphore,获取到一个当前的值,比如说是3,3 > 1
  • decrby semaphore 1,将信号量允许获取锁的客户端的数量递减1,变成2
  • decrby semaphore 1
  • decrby semaphore 1
  • 执行3次加锁后,semaphore值为0
  • 此时如果再来进行加锁则直接返回0,然后进入死循环去获取锁

四、RSemaphore的解锁流程

通过前面对RSemaphore获取锁的分析,我们很容易能猜到,释放锁,无非就是归还许可数量到redis中。我们查看具体的源码:

public RFuture<Void> releaseAsync(int permits) {
    if (permits < 0) {
        throw new IllegalArgumentException("Permits amount can't be negative");
    }
    if (permits == 0) {
        return new CompletableFutureWrapper<>((Void) null);
    }
    RFuture<Void> future = commandExecutor.evalWriteAsync(getRawName(), StringCodec.INSTANCE, RedisCommands.EVAL_VOID,
            // 通过incrby增加许可数量
            "local value = redis.call('incrby', KEYS[1], ARGV[1]); " +
                    // 发布一条消息到redisson_sc:{semaphore}中
                    "redis.call('publish', KEYS[2], value); ",
            Arrays.asList(getRawName(), getChannelName()), permits);
    if (log.isDebugEnabled()) {
        future.thenAccept(o -> {
            log.debug("released, permits: {}, name: {}", permits, getName());
        });
    }
    return future;
}

到此这篇关于Redisson分布式信号量RSemaphore的使用超详细讲解的文章就介绍到这了,更多相关Redisson RSemaphore内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Spring Boot的Maven插件Spring Boot Maven plugin详解

    Spring Boot的Maven插件Spring Boot Maven plu

    Spring Boot的Maven插件Spring Boot Maven plugin以Maven的方式提供Spring Boot支持,Spring Boot Maven plugin将Spring Boot应用打包为可执行的jar或war文件,然后以通常的方式运行Spring Boot应用,本文介绍Spring Boot的Maven插件Spring Boot Maven plugin,一起看看吧
    2024-01-01
  • springboot 接口版本区分方式

    springboot 接口版本区分方式

    这篇文章主要介绍了springboot 接口版本区分方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-10-10
  • Netty客户端接入流程NioSocketChannel创建解析

    Netty客户端接入流程NioSocketChannel创建解析

    这篇文章主要为大家介绍了Netty客户端接入流程NioSocketChannel创建源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-03-03
  • 基于ScheduledExecutorService的两种方法(详解)

    基于ScheduledExecutorService的两种方法(详解)

    下面小编就为大家带来一篇基于ScheduledExecutorService的两种方法(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • 关于自定义过滤器获取不到session问题

    关于自定义过滤器获取不到session问题

    这篇文章主要介绍了关于自定义过滤器获取不到session问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-01-01
  • Spring Boot web项目的TDD流程

    Spring Boot web项目的TDD流程

    TDD(Test-driven development) 测试驱动开发,简单点说就是编写测试,再编写代码。这是首要一条,不可动摇的一条,先写代码后写测试的都是假TDD。
    2021-05-05
  • Springboot中整合knife4j接口文档的过程详解

    Springboot中整合knife4j接口文档的过程详解

    knife4j就swagger的升级版API文档的一个框架,但是用起来比swagger方便多了,UI更加丰富,这篇文章主要介绍了Springboot中整合knife4j接口文档,需要的朋友可以参考下
    2022-04-04
  • 分析ThreadLocal内存泄漏问题

    分析ThreadLocal内存泄漏问题

    ThreadLocal的作用是提供线程内的局部变量,这种变量在线程生命周期内起作用,减少同一个线程内多个函数或者组件之间一些公共变量传递的复杂度,但是如果滥用ThreadLocal可能会导致内存泄漏,所以本文将为大家分析ThreadLocal内存泄漏问题
    2023-07-07
  • 你要知道IDEA的这些必备插件

    你要知道IDEA的这些必备插件

    这篇文章主要介绍了你要知道IDEA的这些必备插件,文中有非常详细的图文示例及代码,对正在使用IDEA的小伙伴们有很好的帮助哟,需要的朋友可以参考下
    2021-05-05
  • MyBatis+MySQL 返回插入的主键ID的方法

    MyBatis+MySQL 返回插入的主键ID的方法

    本篇文章主要介绍了MyBatis+MySQL 返回插入的主键ID的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下。
    2017-04-04

最新评论