Pandas.DataFrame重置Series的索引index(reset_index)

 更新时间:2023年02月23日 09:42:58   作者:饺子大人  
本文主要介绍了Pandas.DataFrame重置Series的索引index(reset_index),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

如果使用reset_index()方法,则可以将pandas.DataFrame,pandas.Series的索引索引(行名称,行标签)重新分配为从0开始的序列号(行号)。

如果将行号用作索引,则通过排序更改行的顺序或删除行并得到缺少的号码时,重新索引会更容易。

当行名(行标签)用作索引时,它也可用于删除当前索引或恢复数据列。您可以使用set_index()和reset_index()将索引更改(重置)到另一列。

将描述以下内容。

使用reset_index()将索引重新分配给序列号

  • 基本用法
  • 删除原始索引:参数drop
  • 更改原始对象:参数inplace

使用reset_index()和set_index()将索引更改为另一列(重置)

以下面的数据为例。

import pandas as pd

df = pd.read_csv('./data/21/sample_pandas_normal.csv')
print(df)
#       name  age state  point
# 0    Alice   24    NY     64
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 3     Dave   68    TX     70
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57

该示例为pandas.DataFrame,但pandas.Series也具有reset_index()。两个参数的用法相同。

使用reset_index()将索引重新分配给序列号

使用sort_values()对行进行排序以进行说明。有关排序的详细信息,请参见以下文章。

pandas.DataFrame,Series排序(sort_values,sort_index)

df.sort_values('state', inplace=True)
print(df)
#       name  age state  point
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 4    Ellen   24    CA     88
# 0    Alice   24    NY     64
# 5    Frank   30    NY     57
# 3     Dave   68    TX     70

基本用法

由于索引已经分散,因此将它们重新分配给从0开始的连续数字。

如果在不指定任何参数的情况下使用reset_index(),则序列号将成为新索引,而原始索引将保留为新列。

df_r = df.reset_index()
print(df_r)
#    index     name  age state  point
# 0      1      Bob   42    CA     92
# 1      2  Charlie   18    CA     70
# 2      4    Ellen   24    CA     88
# 3      0    Alice   24    NY     64
# 4      5    Frank   30    NY     57
# 5      3     Dave   68    TX     70

删除原始索引:参数drop

如果参数drop为True,则原始索引将被删除并且不会保留。

df_r = df.reset_index(drop=True)
print(df_r)
#       name  age state  point
# 0      Bob   42    CA     92
# 1  Charlie   18    CA     70
# 2    Ellen   24    CA     88
# 3    Alice   24    NY     64
# 4    Frank   30    NY     57
# 5     Dave   68    TX     70

更改原始对象:参数inplace

默认情况下,原始对象不会更改,并且会返回一个新对象,但是如果inplace参数为True,则会更改原始对象。

df.reset_index(inplace=True, drop=True)
print(df)
#       name  age state  point
# 0      Bob   42    CA     92
# 1  Charlie   18    CA     70
# 2    Ellen   24    CA     88
# 3    Alice   24    NY     64
# 4    Frank   30    NY     57
# 5     Dave   68    TX     70

使用reset_index()和set_index()将索引更改为另一列(重置)

如果将行名设置为索引而不是数字。

df = pd.read_csv('./data/21/sample_pandas_normal.csv', index_col=0)
print(df)
#          age state  point
# name
# Alice     24    NY     64
# Bob       42    CA     92
# Charlie   18    CA     70
# Dave      68    TX     70
# Ellen     24    CA     88
# Frank     30    NY     57

如果使用reset_index()方法,则将序列号设置为索引,并将原始索引添加到data列。

df_r = df.reset_index()
print(df_r)
#       name  age state  point
# 0    Alice   24    NY     64
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 3     Dave   68    TX     70
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57

如果将set_index()照原样应用于原始DataFrame,则会删除原始索引。

df_s = df.set_index('state')
print(df_s)
#        age  point
# state            
# NY      24     64
# CA      42     92
# CA      18     70
# TX      68     70
# CA      24     88
# NY      30     57

如果要将原始索引保留为数据字符串,则可以在reset_index()之后使用set_index()。

df_rs = df.reset_index().set_index('state')
print(df_rs)
#           name  age  point
# state                     
# NY       Alice   24     64
# CA         Bob   42     92
# CA     Charlie   18     70
# TX        Dave   68     70
# CA       Ellen   24     88
# NY       Frank   30     57

注意,为方便起见,在此示例中将具有重叠值的列设置为索引,但是如果索引值不重叠(每个值都是唯一的),则更容易选择数据。

到此这篇关于Pandas.DataFrame重置Series的索引index(reset_index)的文章就介绍到这了,更多相关Pandas.DataFrame重置Series索引内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python中基础的socket编程实战攻略

    Python中基础的socket编程实战攻略

    Python拥有内置的socket模块,可以用简洁明了的代码来进行socket通信操作,这里我们就为大家整理了一份Python中基础的socket编程实战攻略,需要的朋友可以参考下.
    2016-06-06
  • 使用python客户端访问impala的操作方式

    使用python客户端访问impala的操作方式

    这篇文章主要介绍了使用python客户端访问impala的操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python如何统计序列中元素

    python如何统计序列中元素

    这篇文章主要为大家详细介绍了python如何统计序列中的元素,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • 一文学会Python列表list的使用

    一文学会Python列表list的使用

    这篇文章主要为大家介绍了Python列表list的使用全面解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • python 给图像添加透明度(alpha通道)

    python 给图像添加透明度(alpha通道)

    这篇文章主要介绍了python 给图像添加透明度,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • python版百度语音识别功能

    python版百度语音识别功能

    这篇文章为大家详细主要介绍了python版百度语音识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-07-07
  • Python编程快速上手——Excel表格创建乘法表案例分析

    Python编程快速上手——Excel表格创建乘法表案例分析

    这篇文章主要介绍了Python Excel表格创建乘法表,结合具体实例形式分析了Python接受cmd命令操作Excel文件创建乘法表相关实现技巧,需要的朋友可以参考下
    2020-02-02
  • Python 实现一个简单的web服务器

    Python 实现一个简单的web服务器

    这篇文章主要介绍了Python 实现一个简单的web服务器的方法,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2021-01-01
  • python函数中return后的语句一定不会执行吗?

    python函数中return后的语句一定不会执行吗?

    这篇文章主要给大家详细分析讲解了关于python函数中return语句后的语句是否一定不会执行的相关资料,文中介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编一起来学习学习吧。
    2017-07-07
  • 对Python 内建函数和保留字详解

    对Python 内建函数和保留字详解

    今天小编就为大家分享一篇对Python 内建函数和保留字详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10

最新评论