C语言驱动开发之内核使用IO/DPC定时器详解

 更新时间:2023年04月04日 13:59:29   作者:lyshark  
本章将继续探索驱动开发中的基础部分,定时器在内核中同样很常用,在内核中定时器可以使用两种,即IO定时器,以及DPC定时器,感兴趣的可以了解一下

本章将继续探索驱动开发中的基础部分,定时器在内核中同样很常用,在内核中定时器可以使用两种,即IO定时器,以及DPC定时器,一般来说IO定时器是DDK中提供的一种,该定时器可以为间隔为N秒做定时,但如果要实现毫秒级别间隔,微秒级别间隔,就需要用到DPC定时器,如果是秒级定时其两者基本上无任何差异,本章将简单介绍IO/DPC这两种定时器的使用技巧。

首先来看IO定时器是如何使用的,IO定时器在使用上需要调用IoInitializeTimer函数对定时器进行初始化,但需要注意的是此函数每个设备对象只能调用一次,当初始化完成后用户可调用IoStartTimer让这个定时器运行,相反的调用IoStopTimer则用于关闭定时。

// 初始化定时器
NTSTATUS IoInitializeTimer(
  [in]           PDEVICE_OBJECT         DeviceObject,  // 设备对象
  [in]           PIO_TIMER_ROUTINE      TimerRoutine,  // 回调例程
  [in, optional] __drv_aliasesMem PVOID Context        // 回调例程参数
);
// 启动定时器
VOID IoStartTimer(
  [in] PDEVICE_OBJECT DeviceObject             // 设备对象
);
// 关闭定时器
VOID IoStopTimer(
  [in] PDEVICE_OBJECT DeviceObject             // 设备对象
);

这里我们最关心的其实是IoInitializeTimer函数中的第二个参数TimerRoutine该参数用于传递一个自定义回调函数地址,其次由于定时器需要依附于一个设备,所以我们还需要调用IoCreateDevice创建一个新设备来让定时器线程使用,实现定时器代码如下所示。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

#include <ntifs.h>
#include <wdm.h>
#include <ntstrsafe.h>

LONG count = 0;

// 自定义定时器函数
VOID MyTimerProcess( __in struct _DEVICE_OBJECT *DeviceObject, __in_opt PVOID Context)
{
	InterlockedIncrement(&count);
	DbgPrint("定时器计数 = %d", count);
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
	// 关闭定时器
	IoStopTimer(driver->DeviceObject);

	// 删除设备
	IoDeleteDevice(driver->DeviceObject);

	DbgPrint(("Uninstall Driver Is OK \n"));
}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("hello lyshark \n");

	NTSTATUS status = STATUS_UNSUCCESSFUL;

	// 定义设备名以及定时器
	UNICODE_STRING dev_name = RTL_CONSTANT_STRING(L"");
	PDEVICE_OBJECT dev;
	status = IoCreateDevice(Driver, 0, &dev_name, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPEN, FALSE, &dev);
	if (!NT_SUCCESS(status))
	{
		return STATUS_UNSUCCESSFUL;
	}
	else
	{
		// 初始化定时器并开启
		IoInitializeTimer(dev, MyTimerProcess, NULL);
		IoStartTimer(dev);
	}

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

编译并运行这段代码,那么系统会每隔1秒执行一次MyTimerProcess这个自定义函数。

那么如何让其每隔三秒执行一次呢,其实很简单,通过InterlockedDecrement函数实现递减(每次调用递减1)当计数器变为0时InterlockedCompareExchange会让其继续变为3,以此循环即可完成三秒输出一次的效果。

LONG count = 3;

// 自定义定时器函数
VOID MyTimerProcess(__in struct _DEVICE_OBJECT *DeviceObject, __in_opt PVOID Context)
{
	// 递减计数
	InterlockedDecrement(&count);

	// 当计数减到0之后继续变为3
	LONG preCount = InterlockedCompareExchange(&count, 3, 0);

	//每隔3秒计数器一个循环输出如下信息
	if (preCount == 0)
	{
		DbgPrint("[LyShark] 三秒过去了 \n");
	}
}

程序运行后,你会看到如下输出效果;

相比于IO定时器来说,DPC定时器则更加灵活,其可对任意间隔时间进行定时,DPC定时器内部使用定时器对象KTIMER,当对定时器设定一个时间间隔后,每隔这段时间操作系统会将一个DPC例程插入DPC队列。当操作系统读取DPC队列时,对应的DPC例程会被执行,此处所说的DPC例程同样表示回调函数。

DPC定时器中我们所需要使用的函数声明部分如下所示;

// 初始化定时器对象 PKTIMER 指向调用方为其提供存储的计时器对象的指针
void KeInitializeTimer(
  [out] PKTIMER Timer    // 定时器指针
);

// 初始化DPC对象
void KeInitializeDpc(
  [out]          __drv_aliasesMem PRKDPC Dpc,
  [in]           PKDEFERRED_ROUTINE      DeferredRoutine,
  [in, optional] __drv_aliasesMem PVOID  DeferredContext
);

// 设置定时器
BOOLEAN KeSetTimer(
  [in, out]      PKTIMER       Timer,     // 定时器对象的指针
  [in]           LARGE_INTEGER DueTime,   // 时间间隔
  [in, optional] PKDPC         Dpc        // DPC对象
);

// 取消定时器
BOOLEAN KeCancelTimer(
  [in, out] PKTIMER unnamedParam1         // 定时器指针
);

注意;在调用KeSetTimer后,只会触发一次DPC例程。如果想周期的触发DPC例程,需要在DPC例程被触发后,再次调用KeSetTimer函数,应用DPC定时代码如下所示。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

#include <ntifs.h>
#include <wdm.h>
#include <ntstrsafe.h>

LONG count = 0;
KTIMER g_ktimer;
KDPC g_kdpc;

// 自定义定时器函数
VOID MyTimerProcess(__in struct _KDPC *Dpc,__in_opt PVOID DeferredContext,__in_opt PVOID SystemArgument1,__in_opt PVOID SystemArgument2)
{
	LARGE_INTEGER la_dutime = { 0 };
	la_dutime.QuadPart = 1000 * 1000 * -10;

	// 递增计数器
	InterlockedIncrement(&count);

	DbgPrint("DPC 定时执行 = %d", count);

	// 再次设置定时
	KeSetTimer(&g_ktimer, la_dutime, &g_kdpc);
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
	// 取消计数器
	KeCancelTimer(&g_ktimer);

	DbgPrint(("Uninstall Driver Is OK \n"));
}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("hello lyshark \n");

	LARGE_INTEGER la_dutime = { 0 };

	// 每隔1秒执行一次
	la_dutime.QuadPart = 1000 * 1000 * -10;

	// 1.初始化定时器对象
	KeInitializeTimer(&g_ktimer);

	// 2.初始化DPC定时器
	KeInitializeDpc(&g_kdpc, MyTimerProcess, NULL);

	// 3.设置定时器,开始计时
	KeSetTimer(&g_ktimer, la_dutime, &g_kdpc);

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

编译并运行这段程序,会发现其运行后的定时效果与IO定时器并无太大区别,但是DPC可以控制更精细,通过la_dutime.QuadPart = 1000 * 1000 * -10毫秒级别都可被控制。

最后扩展一个知识点,如何得到系统的当前详细时间,获得系统时间。在内核里通过KeQuerySystemTime获取的系统时间是标准时间(GMT+0),转换成本地时间还需使用RtlTimeToTimeFields函数将其转换为TIME_FIELDS结构体格式。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

#include <ntifs.h>
#include <wdm.h>
#include <ntstrsafe.h>

/*
	typedef struct TIME_FIELDS
	{
	CSHORT Year;
	CSHORT Month;
	CSHORT Day;
	CSHORT Hour;
	CSHORT Minute;
	CSHORT Second;
	CSHORT Milliseconds;
	CSHORT Weekday;
	} TIME_FIELDS;
*/

// 内核中获取时间
VOID MyGetCurrentTime()
{
	LARGE_INTEGER CurrentTime;
	LARGE_INTEGER LocalTime;
	TIME_FIELDS   TimeFiled;
	
	// 得到格林威治时间
	KeQuerySystemTime(&CurrentTime);
	
	// 转成本地时间
	ExSystemTimeToLocalTime(&CurrentTime, &LocalTime);
	
	// 转换为TIME_FIELDS格式
	RtlTimeToTimeFields(&LocalTime, &TimeFiled);

	DbgPrint("[时间与日期] %4d年%2d月%2d日 %2d时%2d分%2d秒",
		TimeFiled.Year, TimeFiled.Month, TimeFiled.Day,
		TimeFiled.Hour, TimeFiled.Minute, TimeFiled.Second);
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
	DbgPrint(("Uninstall Driver Is OK \n"));
}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	MyGetCurrentTime();

	DbgPrint("hello lyshark \n");

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

运行后即可在内核中得到当前系统的具体时间;

到此这篇关于C语言驱动开发之内核使用IO/DPC定时器详解的文章就介绍到这了,更多相关C语言内核使用IO/DPC定时器内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C语言实现井字棋游戏(人机对弈)

    C语言实现井字棋游戏(人机对弈)

    这篇文章主要为大家详细介绍了C语言实现井字棋人机对弈游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • Qt实现验证码相关功能的代码示例

    Qt实现验证码相关功能的代码示例

    验证码的原理基于人类视觉和计算机视觉的差异性,通过给用户显示一些难以被机器识别的图形或文字,让用户进行人机交互,确认自己的身份,这样可以有效保护网站安全,所以本给大家介绍了Qt实现验证码相关功能的代码示例,感兴趣的朋友可以参考下
    2024-01-01
  • C语言单链表的图文示例讲解

    C语言单链表的图文示例讲解

    单链表是链表的其中一种基本结构。一个最简单的结点结构如图所示,它是构成单链表的基本结点结构。在结点中数据域用来存储数据元素,指针域用于指向下一个具有相同结构的结点。 因为只有一个指针结点,称为单链表
    2023-02-02
  • C语言详细讲解树状数组与线段树

    C语言详细讲解树状数组与线段树

    顾名思义,树状数组就是用数组来模拟树形结构呗。那么衍生出一个问题,为什么不直接建树,因为树状数组能处理的问题就没必要建树。线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点
    2022-04-04
  • C++ 反向迭代器模拟实现

    C++ 反向迭代器模拟实现

    反向迭代器reverse_iterator是一种反向遍历容器的迭代器,也就是从最后一个元素到第一个元素遍历容器,本文主要介绍了C++ 反向迭代器模拟实现,感兴趣的可以了解一下
    2024-01-01
  • OpenCV利用霍夫变换实现交通车道线检测

    OpenCV利用霍夫变换实现交通车道线检测

    经典霍夫变换用来检测图像中的直线,后来霍夫变换经过扩展可以进行任意形状物体的识别,例如圆和椭圆。本文就来利用霍夫变换实现交通车道线检测,需要的可以参考一下
    2022-09-09
  • C++ STL标准库std::vector的使用详解

    C++ STL标准库std::vector的使用详解

    vector 是表示可以改变大小的数组的序列容器,本文主要介绍了C++ STL标准库std::vector的使用详解,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • C语言魔方阵的三种实现方法

    C语言魔方阵的三种实现方法

    大家好,本篇文章主要讲的是C语言魔方阵的三种实现方法,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2021-12-12
  • C++ Boost Lockfree超详细讲解使用方法

    C++ Boost Lockfree超详细讲解使用方法

    Boost是为C++语言标准库提供扩展的一些C++程序库的总称。Boost库是一个可移植、提供源代码的C++库,作为标准库的后备,是C++标准化进程的开发引擎之一,是为C++语言标准库提供扩展的一些C++程序库的总称
    2022-11-11
  • C++ 自增、自减运算符的重载和性能分析小结

    C++ 自增、自减运算符的重载和性能分析小结

    这篇文章主要介绍了C++ 自增、自减运算符的重载和性能分析小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12

最新评论