利用ace的ACE_Task等类实现线程池的方法详解

 更新时间:2013年05月31日 16:02:00   作者:  
本篇文章是对利用ace的ACE_Task等类实现线程池的方法进行了详细的分析介绍,需要的朋友参考下
本代码应该是ace自带的例子了,但是我觉得是非常好的,于是给大家分享一下。
注释非常详细啊。
头文件
复制代码 代码如下:

#ifndef THREAD_POOL_H
#define THREAD_POOL_H
/* In order to implement a thread pool, we have to have an object that
   can create a thread.  The ACE_Task<> is the basis for doing just
   such a thing.  */
#include "ace/Task.h"
//add by ychen 20070714 below
#include "ace/Mutex.h"
//add by ychen 20070714 above
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
/* We need a forward reference for ACE_Event_Handler so that our
   enqueue() method can accept a pointer to one.  */

class ACE_Event_Handler;
/* Although we modified the rest of our program to make use of the
   thread pool implementation, if you look closely you'll see that the
   changes were rather minor.  The "ACE way" is generally to create a
   helper object that abstracts away the details not relevant to your
   application.  That's what I'm trying to do here by creating the
   Thread_Pool object.  */
class Thread_Pool : public ACE_Task<ACE_MT_SYNCH>
{
public:
  typedef ACE_Task<ACE_MT_SYNCH> inherited;
  /* Provide an enumeration for the default pool size.  By doing this,
    other objects can use the value when they want a default.  */
  enum size_t
  {
    default_pool_size_ = 1
  };
  // Basic constructor
  Thread_Pool (void);
  /* Opening the thread pool causes one or more threads to be
    activated.  When activated, they all execute the svc() method
    declared below.  */
  int open (int pool_size = default_pool_size_);
  /* Some compilers will complain that our open() above attempts to
    override a virtual function in the baseclass.  We have no
    intention of overriding that method but in order to keep the
    compiler quiet we have to add this method as a pass-thru to the
    baseclass method.  */
  virtual int open (void *void_data)
  {
    return inherited::open (void_data);
  }
  /*
   */
  virtual int close (u_long flags = 0);
  /* To use the thread pool, you have to put some unit of work into
    it.  Since we're dealing with event handlers (or at least their
    derivatives), I've chosen to provide an enqueue() method that
    takes a pointer to an ACE_Event_Handler.  The handler's
    handle_input() method will be called, so your object has to know
    when it is being called by the thread pool.  */
  int enqueue (ACE_Event_Handler *handler);
  /* Another handy ACE template is ACE_Atomic_Op<>.  When
    parameterized, this allows is to have a thread-safe counting
    object.  The typical arithmetic operators are all internally
    thread-safe so that you can share it across threads without
    worrying about any contention issues.  */
    typedef ACE_Atomic_Op<ACE_Mutex, int> counter_t;

protected:
  /* Our svc() method will dequeue the enqueued event handler objects
    and invoke the handle_input() method on each.  Since we're likely
    running in more than one thread, idle threads can take work from
    the queue while other threads are busy executing handle_input() on
    some object.  */
  int svc (void);
  /* We use the atomic op to keep a count of the number of threads in
    which our svc() method is running.  This is particularly important
    when we want to close() it down!  */
  counter_t active_threads_;
};
#endif /* THREAD_POOL_H */

实现文件
复制代码 代码如下:

// thread_pool.cpp,v 1.9 1999/09/22 03:13:42 jcej Exp
#include "thread_pool.h"
/* We need this header so that we can invoke handle_input() on the
   objects we dequeue.  */
#include "ace/Event_Handler.h"
/* All we do here is initialize our active thread counter.  */
Thread_Pool::Thread_Pool (void)
  : active_threads_ (0)
{
}
/* Our open() method is a thin disguise around the ACE_Task<>
   activate() method.  By hiding activate() in this way, the users of
   Thread_Pool don't have to worry about the thread configuration
   flags.  */
int
Thread_Pool::open (int pool_size)
{
  return this->activate (THR_NEW_LWP|THR_DETACHED, pool_size);
}
/* Closing the thread pool can be a tricky exercise.  I've decided to
   take an easy approach and simply enqueue a secret message for each
   thread we have active.  */
int
Thread_Pool::close (u_long flags)
{
  ACE_UNUSED_ARG(flags);
  /* Find out how many threads are currently active */
  int counter = active_threads_.value ();
  /* For each one of the active threads, enqueue a "null" event
    handler.  Below, we'll teach our svc() method that "null" means
    "shutdown".  */
  while (counter--)
    this->enqueue (0);
  /* As each svc() method exits, it will decrement the active thread
    counter.  We just wait here for it to reach zero.  Since we don't
    know how long it will take, we sleep for a quarter of a second
    between tries.  */
  while (active_threads_.value ())
    ACE_OS::sleep (ACE_Time_Value (0, 250000));
  return(0);
}
/* When an object wants to do work in the pool, it should call the
   enqueue() method.  We introduce the ACE_Message_Block here but,
   unfortunately, we seriously misuse it.  */
int
Thread_Pool::enqueue (ACE_Event_Handler *handler)
{
  /* An ACE_Message_Block is a chunk of data.  You put them into an
    ACE_Message_Queue.  ACE_Task<> has an ACE_Message_Queue built in.
    In fact, the parameter to ACE_Task<> is passed directly to
    ACE_Message_Queue.  If you look back at our header file you'll see
    that we used ACE_MT_SYNCH as the parameter indicating that we want
    MultiThread Synch safety.  This allows us to safely put
    ACE_Message_Block objects into the message queue in one thread and
    take them out in another.  */
  /* An ACE_Message_Block wants to have char* data.  We don't have
    that.  We could cast our ACE_Event_Handler* directly to a char*
    but I wanted to be more explicit.  Since casting pointers around
    is a dangerous thing, I've gone out of my way here to be very
    clear about what we're doing.
    First: Cast the handler pointer to a void pointer.  You can't do
    any useful work on a void pointer, so this is a clear message that
    we're making the pointer unusable.
    Next: Cast the void pointer to a char pointer that the ACE_Message_Block will accept.  */
  void *v_data = (void *) handler;
  char *c_data = (char *) v_data;
  ACE_Message_Block *mb;
  /* Construct a new ACE_Message_Block.  For efficiency, you might
    want to preallocate a stack of these and reuse them.  For
    simplicity, I'll just create what I need as I need it.  */
  ACE_NEW_RETURN (mb,
                  ACE_Message_Block (c_data),
                  -1);
  /* Our putq() method is a wrapper around one of the enqueue methods
    of the ACE_Message_Queue that we own.  Like all good methods, it
    returns -1 if it fails for some reason.  */
  if (this->putq (mb) == -1)
    {
      /* Another trait of the ACE_Message_Block objects is that they
        are reference counted.  Since they're designed to be passed
        around between various objects in several threads we can't
        just delete them whenever we feel like it.  The release()
        method is similar to the destroy() method we've used
        elsewhere.  It watches the reference count and will delete the
        object when possible.  */
      mb->release ();
      return -1;
    }
  return 0;
}
/* The "guard" concept is very powerful and used throughout
   multi-threaded applications.  A guard normally does some operation
   on an object at construction and the "opposite" operation at
   destruction.  For instance, when you guard a mutex (lock) object,
   the guard will acquire the lock on construction and release it on
   destruction.  In this way, your method can simply let the guard go
   out of scope and know that the lock is released.
   Guards aren't only useful for locks however.  In this application
   I've created two guard objects for quite a different purpose.  */
/* The Counter_Guard is constructed with a reference to the thread
   pool's active thread counter.  The guard increments the counter
   when it is created and decrements it at destruction.  By creating
   one of these in svc(), I know that the counter will be decremented
   no matter how or where svc() returns.  */
class Counter_Guard
{
public:
  Counter_Guard (Thread_Pool::counter_t &counter)
    : counter_ (counter)
  {
    ++counter_;
  }
  ~Counter_Guard (void)
  {
    --counter_;
  }
protected:
  Thread_Pool::counter_t &counter_;
};
/* My Message_Block_Guard is also a little non-traditional.  It
   doesn't do anything in the constructor but it's destructor ensures
   that the message block's release() method is called.  This is a
   cheap way to prevent a memory leak if I need an additional exit
   point in svc().  */
class Message_Block_Guard
{
public:
  Message_Block_Guard (ACE_Message_Block *&mb)
    : mb_ (mb)
  {
  }
  ~Message_Block_Guard (void)
  {
    mb_->release ();
  }
protected:
  ACE_Message_Block *&mb_;
};
/* Now we come to the svc() method.  As I said, this is being executed
   in each thread of the Thread_Pool.  Here, we pull messages off of
   our built-in ACE_Message_Queue and cause them to do work.  */
int
Thread_Pool::svc (void)
{
  /* The getq() method takes a reference to a pointer.  So... we need
    a pointer to give it a reference to.  */
  ACE_Message_Block *mb;
  /* Create the guard for our active thread counter object.  No matter
    where we choose to return() from svc(), we now know that the
    counter will be decremented.  */
  Counter_Guard counter_guard (active_threads_);
  /* Get messages from the queue until we have a failure.  There's no
    real good reason for failure so if it happens, we leave
    immediately.  */
  while (this->getq (mb) != -1)
    {
      /* A successful getq() will cause "mb" to point to a valid
        refernce-counted ACE_Message_Block.  We use our guard object
        here so that we're sure to call the release() method of that
        message block and reduce it's reference count.  Once the count
        reaches zero, it will be deleted.  */
      Message_Block_Guard message_block_guard (mb);
      /* As noted before, the ACE_Message_Block stores it's data as a
        char*.  We pull that out here and later turn it into an
        ACE_Event_Handler* */
      char *c_data = mb->base ();
      /* We've chosen to use a "null" value as an indication to leave.
        If the data we got from the queue is not null then we have
        some work to do.  */
      if (c_data)
        {
          /* Once again, we go to great lengths to emphasize the fact
            that we're casting pointers around in rather impolite
            ways.  We could have cast the char* directly to an
            ACE_Event_Handler* but then folks might think that's an OK
            thing to do.
            (Note: The correct way to use an ACE_Message_Block is to
            write data into it.  What I should have done was create a
            message block big enough to hold an event handler pointer
            and then written the pointer value into the block.  When
            we got here, I would have to read that data back into a
            pointer.  While politically correct, it is also a lot of
            work.  If you're careful you can get away with casting
            pointers around.)  */
          void *v_data = (void *) c_data;
          ACE_Event_Handler *handler = (ACE_Event_Handler *) v_data;
          /* Now that we finally have an event handler pointer, invoke
            it's handle_input() method.  Since we don't know it's
            handle, we just give it a default.  That's OK because we
            know that we're not using the handle in the method anyway.  */
          if (handler->handle_input (ACE_INVALID_HANDLE) == -1)
            {
              /* Tell the handler that it's time to go home.  The
                "normal" method for shutting down a handler whose
                handler failed is to invoke handle_close().  This will
                take care of cleaning it up for us.  Notice how we use
                the handler's get_handle() method to populate it's
                "handle" parameter.  Convenient isn't it?  */
              handler->handle_close (handler->get_handle (), 0);
              /* Also notice that we don't exit the svc() method here!
                The first time I did this, I was exiting.  After a few
                clients disconnect you have an empty thread pool.
                Hard to do any more work after that...  */
            }
        }
      else
        /* If we get here, we were given a message block with "null"
           data.  That is our signal to leave, so we return(0) to
           leave gracefully.  */
          return 0;  // Ok, shutdown request
      // message_block_guard goes out of scope here and releases the
      // message_block instance.
    }
  return 0;
}

其中,对其中类中的两个变量使用了管理的思想。Counter_Guard类和Message_Block_Guard 类分别对其进行了管理。
因为ACE_Task类是使用了ACE_message_block 进行对消息的封装。因此使用类,防止了内存的泄漏。
ACE_Event_Handler  是事件句柄,类似于操作符。当我们处理的时候,对其进行处理。

相关文章

  • C语言随机数生成教程(rand和srand用法)

    C语言随机数生成教程(rand和srand用法)

    这篇文章主要介绍了C语言随机数生成教程(rand和srand用法),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • C/C++判断传入的UTC时间是否当天的实现方法

    C/C++判断传入的UTC时间是否当天的实现方法

    在项目中经常会显示一个时间,如果这个时间在今日内就显示为时分秒,否则显示为年月日,有需要的朋友可以参考一下
    2014-01-01
  • C++写时拷贝实现原理及实例解析

    C++写时拷贝实现原理及实例解析

    这篇文章主要介绍了C++写时拷贝实现原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • C语言实现linux网卡检测精简版

    C语言实现linux网卡检测精简版

    这篇文章主要为大家详细介绍了C语言实现linux网卡检测的精简版,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • java 中ArrayList与LinkedList性能比较

    java 中ArrayList与LinkedList性能比较

    这篇文章主要介绍了java 中ArrayList与LinkedList性能比较的相关资料,需要的朋友可以参考下
    2017-03-03
  • C++基础入门教程(五):new和delete

    C++基础入门教程(五):new和delete

    这篇文章主要介绍了C++基础入门教程(五):new和delete,本文讲解了动态分配内存、new和delete的配对、new、delete与reatin、release的关系、动态数组等内容,需要的朋友可以参考下
    2014-11-11
  • 如何查看进程实际的内存占用情况详解

    如何查看进程实际的内存占用情况详解

    本篇文章是对如何查看进程实际的内存占用情况进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • Ubuntu 20.04 下安装配置 VScode 的 C/C++ 开发环境(图文教程)

    Ubuntu 20.04 下安装配置 VScode 的 C/C++ 开发环境(图文教程)

    这篇文章主要介绍了Ubuntu 20.04 下安装配置 VScode 的 C/C++ 开发环境,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • 学习C和C++的9点经验总结

    学习C和C++的9点经验总结

    本文给大家总结了一下我们在学习C和C++的时候的一些经验和需要注意的事项,希望能给大家一些帮助,少走些弯路
    2015-12-12
  • C++实现LeetCode(72.编辑距离)

    C++实现LeetCode(72.编辑距离)

    这篇文章主要介绍了C++实现LeetCode(72.编辑距离),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07

最新评论