C++设计模式之策略模式

 更新时间:2014年10月09日 09:41:51   作者:果冻想  
这篇文章主要介绍了C++设计模式之策略模式,本文讲解了什么是策略模式、策略模式的使用场合、策略模式的代码实例等内容,需要的朋友可以参考下

前言

刚刚加班回来;哎,公司规定平时加班只有10块钱的餐补;星期六和星期天加班,只给串休假;在国家规定的节假日按照3倍工资发放。那么对于这么多的计算加班费的方法,公司的OA系统是如何进行做的呢?这就要说到今天我这里总结的策略设计模式了。

策略模式

在GOF的《设计模式:可复用面向对象软件的基础》一书中对策略模式是这样说的:定义一系列的算法,把它们一个个封装起来,并且使它们可相互替换。该模式使得算法可独立于使用它的客户而变化。

策略模式为了适应不同的需求,只把变化点封装了,这个变化点就是实现不同需求的算法,但是,用户需要知道各种算法的具体情况。就像上面的加班工资,不同的加班情况,有不同的算法。我们不能在程序中将计算工资的算法进行硬编码,而是能自由的变化的。这就是策略模式。

UML类图

Strategy:定义所有支持的算法的公共接口。Context使用这个接口来调用某ConcreteStrategy定义的算法;
ConcreteStrategy:实现Strategy接口的具体算法;
Context:使用一个ConcreteStrategy对象来配置;维护一个对Stategy对象的引用,同时,可以定义一个接口来让Stategy访问它的数据。

使用场合

当存在以下情况时使用Strategy模式:

1.许多相关的类仅仅是行为有异。“策略”提供了一种用多个行为中的一个行为来配置一个类的方法;
2.需要使用一个算法的不同变体;
3.算法使用客户不应该知道的数据。可使用策略模式以避免暴露复杂的、与算法相关的数据结构;
4.一个类定义了多种行为,并且这些行为在这个类的操作中以多个条件语句的形式出现。将相关的条件分支移入它们各自的Strategy类中以替代这些条件语句。(是不是和状态模式有点一样哦?)

代码实现

首先实现最单纯的策略模式,代码如下:

复制代码 代码如下:

#include <iostream>
using namespace std;
 
// The abstract strategy
class Strategy
{
public:
     virtual void AlgorithmInterface() = 0;
};
 
class ConcreteStrategyA : public Strategy
{
public:
     void AlgorithmInterface()
     {
          cout<<"I am from ConcreteStrategyA."<<endl;
     }
};
 
class ConcreteStrategyB : public Strategy
{
public:
     void AlgorithmInterface()
     {
          cout<<"I am from ConcreteStrategyB."<<endl;
     }
};
 
class ConcreteStrategyC : public Strategy
{
public:
     void AlgorithmInterface()
     {
          cout<<"I am from ConcreteStrategyC."<<endl;
     }
};
 
class Context
{
public:
     Context(Strategy *pStrategyArg) : pStrategy(pStrategyArg)
     {
     }
     void ContextInterface()
     {
          pStrategy->AlgorithmInterface();
     }
private:
     Strategy *pStrategy;
};
 
int main()
{
     // Create the Strategy
     Strategy *pStrategyA = new ConcreteStrategyA;
     Strategy *pStrategyB = new ConcreteStrategyB;
     Strategy *pStrategyC = new ConcreteStrategyC;
     Context *pContextA = new Context(pStrategyA);
     Context *pContextB = new Context(pStrategyB);
     Context *pContextC = new Context(pStrategyC);
     pContextA->ContextInterface();
     pContextB->ContextInterface();
     pContextC->ContextInterface();
 
     if (pStrategyA) delete pStrategyA;
     if (pStrategyB) delete pStrategyB;
     if (pStrategyC) delete pStrategyC;
 
     if (pContextA) delete pContextA;
     if (pContextB) delete pContextB;
     if (pContextC) delete pContextC;
}

在实际操作的过程中,我们会发现,在main函数中,也就是在客户端使用策略模式时,会创建非常多的Strategy,而这样就莫名的增加了客户端的压力,让客户端的复杂度陡然增加了。那么,我们就可以借鉴简单工厂模式,使策略模式和简单工厂模式相结合,从而减轻客户端的压力,代码实现如下:

复制代码 代码如下:

#include <iostream>
using namespace std;
 
// Define the strategy type
typedef enum StrategyType
{
    StrategyA,
    StrategyB,
    StrategyC
}STRATEGYTYPE;
 
// The abstract strategy
class Strategy
{
public:
    virtual void AlgorithmInterface() = 0;
    virtual ~Strategy() = 0; // 谢谢hellowei提出的bug,具体可以参见评论
};
 
Strategy::~Strategy()
{}
 
class ConcreteStrategyA : public Strategy
{
public:
    void AlgorithmInterface()
    {
        cout << "I am from ConcreteStrategyA." << endl;
    }
 
    ~ConcreteStrategyA(){}
};
 
class ConcreteStrategyB : public Strategy
{
public:
    void AlgorithmInterface()
    {
        cout << "I am from ConcreteStrategyB." << endl;
    }
 
    ~ConcreteStrategyB(){}
};
 
class ConcreteStrategyC : public Strategy
{
public:
    void AlgorithmInterface()
    {
        cout << "I am from ConcreteStrategyC." << endl;
    }
 
    ~ConcreteStrategyC(){}
};
 
class Context
{
public:
    Context(STRATEGYTYPE strategyType)
    {
        switch (strategyType)
        {
        case StrategyA:
            pStrategy = new ConcreteStrategyA;
            break;
 
        case StrategyB:
            pStrategy = new ConcreteStrategyB;
            break;
 
        case StrategyC:
            pStrategy = new ConcreteStrategyC;
            break;
 
        default:
            break;
        }
    }
 
    ~Context()
    {
        if (pStrategy) delete pStrategy;
    }
 
    void ContextInterface()
    {
        if (pStrategy)
            pStrategy->AlgorithmInterface();
    }
 
private:
    Strategy *pStrategy;
};
 
int main()
{
    Context *pContext = new Context(StrategyA);
    pContext->ContextInterface();
 
    if (pContext) delete pContext;
}

在上面这个代码中,其实,我们可能看到的更多的是简单工厂模式的应用,我们将策略模式将简单工厂模式结合在了一起,让客户端使用起来更轻松。

总结

策略模式和状态模式,是大同小异的;状态模式讲究的是状态的变化,和不同状态下,执行的不同行为;而策略模式侧重于同一个动作,实现该行为的算法的不同,不同的策略封装了不同的算法。策略模式适用于实现某一功能,而实现该功能的算法是经常改变的情况。在实际工作中,遇到了实际的场景,可能会有更深的体会。比如,我们做某一个系统,该系统可以适用于各种数据库,我们都知道,连接某一种数据库的方式是不一样的,也可以说,连接数据库的“算法”都是不一样的。这样,我们就可以使用策略模式来实现不同的连接数据库的策略,从而实现数据库的动态变换。

相关文章

  • Opencv二帧差法检测运动目标与提取轮廓

    Opencv二帧差法检测运动目标与提取轮廓

    这篇文章主要为大家详细介绍了Opencv使用二帧差法检测运动目标与提取轮廓,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • Visual Studio 2019 Professional 激活方法详解

    Visual Studio 2019 Professional 激活方法详解

    这篇文章主要介绍了Visual Studio 2019 Professional 激活方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • C++的静态联编和动态联编

    C++的静态联编和动态联编

    本文阐述了静态联编和动态联编的概念和区别,通过具体实例分析了实现动态联编的条件,指出了虚函数是实现动态联编的基础。
    2016-03-03
  • Qt Creator配置opencv环境的全过程记录

    Qt Creator配置opencv环境的全过程记录

    最近在PC端QT下配置opencv,想着以后应该会用到,索性记录下,这篇文章主要给大家介绍了关于Qt Creator配置opencv环境的相关资料,需要的朋友可以参考下
    2022-05-05
  • C语言实现跨文件传输数据的几种方式

    C语言实现跨文件传输数据的几种方式

    C语言是一种强大的、通用的编程语言,常用于系统级编程,包括硬件交互,如中断处理和数据采集,在本文中,我们将深入探讨如何使用C语言进行跨文件数据传输,文中有相关的代码供大家参考,需要的朋友可以参考下
    2024-08-08
  • C++ 中CListCtrl的每个项都显示不同的提示信息

    C++ 中CListCtrl的每个项都显示不同的提示信息

    这篇文章主要介绍了C++ 中CListCtrl的每个项都显示不同的提示信息的相关资料,希望通过本文能帮助到大家,需要的朋友可以参考下
    2017-09-09
  • C/C++中虚基类详解及其作用介绍

    C/C++中虚基类详解及其作用介绍

    这篇文章主要介绍了C/C++中虚基类的详解及其作用介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • Dev C++中文乱码的有效解决方案

    Dev C++中文乱码的有效解决方案

    在DevC++中出现汉字乱码的问题通常是由于编码设置不正确导致的,本文通过图文结合的方式给大家介绍了解决方法,对大家的解决问题有一定的帮助,需要的朋友可以参考下
    2025-04-04
  • C语言版五子棋游戏的实现代码

    C语言版五子棋游戏的实现代码

    这篇文章主要为大家详细介绍了C语言版五子棋游戏的实现代码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-07-07
  • 详解C++动态内存管理

    详解C++动态内存管理

    这篇文章主要为大家详细介绍了C++中动态内存管理相关资料,文中示例代码讲解详细,对我们学习C++具有一定帮助,感兴趣的小伙伴快跟随小编一起学习
    2023-05-05

最新评论