几种JAVA细粒度锁的实现方式

 更新时间:2016年05月17日 09:24:47   作者:GameKing  
这篇文章主要为大家详细介绍了几种JAVA细粒度锁的实现方式,感兴趣的小伙伴们可以参考一下

最近在工作上碰见了一些高并发的场景需要加锁来保证业务逻辑的正确性,并且要求加锁后性能不能受到太大的影响。初步的想法是通过数据的时间戳,id等关键字来加锁,从而保证不同类型数据处理的并发性。而java自身api提供的锁粒度太大,很难同时满足这些需求,于是自己动手写了几个简单的扩展...

1. 分段锁

        借鉴concurrentHashMap的分段思想,先生成一定数量的锁,具体使用的时候再根据key来返回对应的lock。这是几个实现里最简单,性能最高,也是最终被采用的锁策略,代码如下:

/**
 * 分段锁,系统提供一定数量的原始锁,根据传入对象的哈希值获取对应的锁并加锁
 * 注意:要锁的对象的哈希值如果发生改变,有可能导致锁无法成功释放!!!
 */
public class SegmentLock<T> {
  private Integer segments = 16;//默认分段数量
  private final HashMap<Integer, ReentrantLock> lockMap = new HashMap<>();

  public SegmentLock() {
    init(null, false);
  }

  public SegmentLock(Integer counts, boolean fair) {
    init(counts, fair);
  }

  private void init(Integer counts, boolean fair) {
    if (counts != null) {
      segments = counts;
    }
    for (int i = 0; i < segments; i++) {
      lockMap.put(i, new ReentrantLock(fair));
    }
  }

  public void lock(T key) {
    ReentrantLock lock = lockMap.get((key.hashCode()>>>1) % segments);
    lock.lock();
  }

  public void unlock(T key) {
    ReentrantLock lock = lockMap.get((key.hashCode()>>>1) % segments);
    lock.unlock();
  }
}

2. 哈希锁

        上述分段锁的基础上发展起来的第二种锁策略,目的是实现真正意义上的细粒度锁。每个哈希值不同的对象都能获得自己独立的锁。在测试中,在被锁住的代码执行速度飞快的情况下,效率比分段锁慢 30% 左右。如果有长耗时操作,感觉表现应该会更好。代码如下:

public class HashLock<T> {
  private boolean isFair = false;
  private final SegmentLock<T> segmentLock = new SegmentLock<>();//分段锁
  private final ConcurrentHashMap<T, LockInfo> lockMap = new ConcurrentHashMap<>();

  public HashLock() {
  }

  public HashLock(boolean fair) {
    isFair = fair;
  }

  public void lock(T key) {
    LockInfo lockInfo;
    segmentLock.lock(key);
    try {
      lockInfo = lockMap.get(key);
      if (lockInfo == null) {
        lockInfo = new LockInfo(isFair);
        lockMap.put(key, lockInfo);
      } else {
        lockInfo.count.incrementAndGet();
      }
    } finally {
      segmentLock.unlock(key);
    }
    lockInfo.lock.lock();
  }

  public void unlock(T key) {
    LockInfo lockInfo = lockMap.get(key);
    if (lockInfo.count.get() == 1) {
      segmentLock.lock(key);
      try {
        if (lockInfo.count.get() == 1) {
          lockMap.remove(key);
        }
      } finally {
        segmentLock.unlock(key);
      }
    }
    lockInfo.count.decrementAndGet();
    lockInfo.unlock();
  }

  private static class LockInfo {
    public ReentrantLock lock;
    public AtomicInteger count = new AtomicInteger(1);

    private LockInfo(boolean fair) {
      this.lock = new ReentrantLock(fair);
    }

    public void lock() {
      this.lock.lock();
    }

    public void unlock() {
      this.lock.unlock();
    }
  }
}

3. 弱引用锁

        哈希锁因为引入的分段锁来保证锁创建和销毁的同步,总感觉有点瑕疵,所以写了第三个锁来寻求更好的性能和更细粒度的锁。这个锁的思想是借助java的弱引用来创建锁,把锁的销毁交给jvm的垃圾回收,来避免额外的消耗。

        有点遗憾的是因为使用了ConcurrentHashMap作为锁的容器,所以没能真正意义上的摆脱分段锁。这个锁的性能比 HashLock 快10% 左右。锁代码:

/**
 * 弱引用锁,为每个独立的哈希值提供独立的锁功能
 */
public class WeakHashLock<T> {
  private ConcurrentHashMap<T, WeakLockRef<T, ReentrantLock>> lockMap = new ConcurrentHashMap<>();
  private ReferenceQueue<ReentrantLock> queue = new ReferenceQueue<>();

  public ReentrantLock get(T key) {
    if (lockMap.size() > 1000) {
      clearEmptyRef();
    }
    WeakReference<ReentrantLock> lockRef = lockMap.get(key);
    ReentrantLock lock = (lockRef == null ? null : lockRef.get());
    while (lock == null) {
      lockMap.putIfAbsent(key, new WeakLockRef<>(new ReentrantLock(), queue, key));
      lockRef = lockMap.get(key);
      lock = (lockRef == null ? null : lockRef.get());
      if (lock != null) {
        return lock;
      }
      clearEmptyRef();
    }
    return lock;
  }

  @SuppressWarnings("unchecked")
  private void clearEmptyRef() {
    Reference<? extends ReentrantLock> ref;
    while ((ref = queue.poll()) != null) {
      WeakLockRef<T, ? extends ReentrantLock> weakLockRef = (WeakLockRef<T, ? extends ReentrantLock>) ref;
      lockMap.remove(weakLockRef.key);
    }
  }

  private static final class WeakLockRef<T, K> extends WeakReference<K> {
    final T key;

    private WeakLockRef(K referent, ReferenceQueue<? super K> q, T key) {
      super(referent, q);
      this.key = key;
    }
  }
}
 

后记

    最开始想借助 locksupport 和 AQS 来实现细粒度锁,写着写着发现正在实现的东西和java 原生的锁区别不大,于是放弃改为对java自带锁的封装,浪费了不少时间。

    实际上在实现了这些细粒度锁之后,又有了新的想法,比如可以通过分段思想将数据提交给专门的线程来处理,可以减少大量线程的阻塞时间,留待日后探索...

相关文章

  • java实现登录窗口

    java实现登录窗口

    这篇文章主要为大家详细介绍了java实现登录窗口,含验证码验证、账户注册等,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-04-04
  • Springboot 全局时间格式化三种方式示例详解

    Springboot 全局时间格式化三种方式示例详解

    时间格式化在项目中使用频率是非常高的,当我们的 API​ 接口返回结果,需要对其中某一个 date​ 字段属性进行特殊的格式化处理,通常会用到 SimpleDateFormat​ 工具处理,这篇文章主要介绍了3 种 Springboot 全局时间格式化方式,需要的朋友可以参考下
    2024-01-01
  • Java中的LinkedHashMap源码详解

    Java中的LinkedHashMap源码详解

    这篇文章主要介绍了Java中的LinkedHashMap源码详解,LinkedHashMap的实现方式是将所有的Entry节点链入一个双向链表,并且它的底层数据结构是HashMap,因此,LinkedHashMap具有HashMap的所有特性,但在存取元素的细节实现上有所不同,需要的朋友可以参考下
    2023-09-09
  • JAVA基础之一些不为人知的那些秘密

    JAVA基础之一些不为人知的那些秘密

    一个 Java 程序可以认为是一系列对象的集合,而这些对象通过调用彼此的方法来协同工作,下面这篇文章主要给大家介绍了JAVA基础之一些不为人知的那些秘密,文中通过图文介绍的非常详细,需要的朋友可以参考下
    2022-01-01
  • Java图片中显示当前时间的方法

    Java图片中显示当前时间的方法

    这篇文章主要介绍了Java图片中显示当前时间的方法,需要的朋友可以参考下
    2017-09-09
  • skywalking源码解析javaAgent工具ByteBuddy应用

    skywalking源码解析javaAgent工具ByteBuddy应用

    这篇文章主要为大家介绍了skywalking源码解析javaAgent工具ByteBuddy应用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2022-03-03
  • Java使用Sharding-JDBC分库分表进行操作

    Java使用Sharding-JDBC分库分表进行操作

    Sharding-JDBC 是无侵入式的 MySQL 分库分表操作工具,本文主要介绍了Java使用Sharding-JDBC分库分表进行操作,感兴趣的可以了解一下
    2021-08-08
  • Java中的非对称加密算法原理与实现方式

    Java中的非对称加密算法原理与实现方式

    在当今的信息时代,数据安全已经成为了一个至关重要的问题,加密技术作为保障信息安全的重要手段,受到了广泛的应用和关注,本篇文章将详细介绍Java中的非对称加密算法原理及其实现方式,需要的朋友可以参考下
    2023-12-12
  • Java踩坑记录之BigDecimal类

    Java踩坑记录之BigDecimal类

    这篇文章主要给大家介绍了关于Java踩坑记录之BigDecimal类的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • 教你如何用Java根据日期生成流水号

    教你如何用Java根据日期生成流水号

    这篇文章主要介绍了教你如何用Java根据日期生成流水号,文中有非常详细的代码示例,对正在学习java的小伙伴们有很好的帮助,需要的朋友可以参考下
    2021-04-04

最新评论