JAVA 实现二叉树(链式存储结构)

 更新时间:2016年07月12日 16:20:45   投稿:lqh  
本篇文章主要介绍用JAVA 实现二叉树,并提供实例.对二叉树数据结构很好的学习实践,有需要的朋友可以参考下

二叉树的分类(按存储结构)

树的分类(按存储结构)

              顺序存储(用数组表示(静态二叉树))
      链式存储

一些特别的二叉根:

                                   完全二叉树,平衡二叉树(AVL),线索二叉树,三叉的(带父亲的指针)
            二叉搜索树或者叫二叉 查找树(BST)

 所用二叉树如下图所示:

 

二叉树的Java实现(链式存储结构)

class TreeNode {
  private int key = 0;
  private String data = null;
  private boolean isVisted = false;
  private TreeNode leftChild = null;
  private TreeNode rightChild = null;
  
  public TreeNode(){
    
  }
  public TreeNode(int key, String data){
    this.key = key;
    this.data = data;
    this.leftChild = null;
    this.rightChild = null;
  }
  public int getKey() {
    return key;
  }
  public void setKey(int key) {
    this.key = key;
  }
  public String getData() {
    return data;
  }
  public void setData(String data) {
    this.data = data;
  }
  public TreeNode getLeftChild() {
    return leftChild;
  }
  public void setLeftChild(TreeNode leftChild) {
    this.leftChild = leftChild;
  }
  public TreeNode getRightChild() {
    return rightChild;
  }
  public void setRightChild(TreeNode rightChild) {
    this.rightChild = rightChild;
  }
  public boolean isVisted() {
    return isVisted;
  }
  public void setVisted(boolean isVisted) {
    this.isVisted = isVisted;
  }
}

public class BinaryTree {

  private TreeNode root = null;

  public BinaryTree() {
    root = new TreeNode(1, "rootNode(A)");
  }
  public void createBinTree(TreeNode root){
    //手动的创建(结构如图所示)
    TreeNode newNodeB = new TreeNode(2,"B");
    TreeNode newNodeC = new TreeNode(3,"C");
    TreeNode newNodeD = new TreeNode(4,"D");
    TreeNode newNodeE = new TreeNode(5,"E");
    TreeNode newNodeF = new TreeNode(6,"F");
    root.setLeftChild(newNodeB);
    root.setRightChild(newNodeC);
    root.getLeftChild().setLeftChild(newNodeD);
    root.getLeftChild().setRightChild(newNodeE);
    root.getRightChild().setRightChild(newNodeF);
  }
  public boolean IsEmpty() {
    // 判二叉树空否
    return root == null;
  }

  public int Height() {
    // 求树高度
    return Height(root);
  }

  public int Height(TreeNode subTree) {
    if (subTree == null)
      return 0; //递归结束:空树高度为0
    else {
      int i = Height(subTree.getLeftChild());
      int j = Height(subTree.getRightChild());
      return (i < j) ? j + 1 : i + 1;
    }

  }

  public int Size() {
    // 求结点数
    return Size(root);
  }

  public int Size(TreeNode subTree) {
    if (subTree == null)
      return 0;
    else {
      return 1 + Size(subTree.getLeftChild())
          + Size(subTree.getRightChild());
    }
  }

  public TreeNode Parent(TreeNode element) {
    //返回双亲结点
    return (root == null || root == element) ? null : Parent(root, element);
  }

  public TreeNode Parent(TreeNode subTree, TreeNode element) {

    if (subTree == null)
      return null;
    if (subTree.getLeftChild() == element
        || subTree.getRightChild() == element)
      //找到, 返回父结点地址
      return subTree;
    TreeNode p;
    //先在左子树中找,如果左子树中没有找到,才到右子树去找
    if ((p = Parent(subTree.getLeftChild(), element)) != null)
      //递归在左子树中搜索
      return p;
    else
      //递归在左子树中搜索
      return Parent(subTree.getRightChild(), element);

  }

  public TreeNode LeftChild(TreeNode element) {
    //返回左子树
    return (element != null) ? element.getLeftChild() : null;
  }

  public TreeNode RightChild(TreeNode element) {
    //返回右子树
    return (element != null) ? element.getRightChild() : null;
  }

  public TreeNode getRoot() {
    //取得根结点
    return root;
  }

  public void destroy(TreeNode subTree) {
    //私有函数: 删除根为subTree的子树
    if (subTree != null) {
      destroy(subTree.getLeftChild()); //删除左子树
      destroy(subTree.getRightChild()); //删除右子树
      //delete subTree;       //删除根结点
      subTree = null;
    }
  }

  public void Traverse(TreeNode subTree) {

    System.out.println("key:" + subTree.getKey() + "--name:"
        + subTree.getData());
    Traverse(subTree.getLeftChild());
    Traverse(subTree.getRightChild());
  }

  public void PreOrder(TreeNode subTree) {
    //先根
    if (subTree != null) {
      visted(subTree);
      PreOrder(subTree.getLeftChild());
      PreOrder(subTree.getRightChild());
    }
  }

  public void InOrder(TreeNode subTree) {
    //中根
    if (subTree != null) {
      InOrder(subTree.getLeftChild());
      visted(subTree);
      InOrder(subTree.getRightChild());
    }
  }

  public void PostOrder(TreeNode subTree) {
    //后根
    if (subTree != null) {
      PostOrder(subTree.getLeftChild());
      PostOrder(subTree.getRightChild());
      visted(subTree);
    }
  }
  public void LevelOrder(TreeNode subTree) {
     //水平遍边
  }
  public boolean Insert(TreeNode element){
    //插入
    return true;
  }
  public boolean Find(TreeNode element){
    //查找
    return true;
  }
  public void visted(TreeNode subTree) {
    subTree.setVisted(true);
    System.out.println("key:" + subTree.getKey() + "--name:"
        + subTree.getData());
  }

  public static void main(String[] args) {
    BinaryTree bt = new BinaryTree();
    bt.createBinTree(bt.root);
    System.out.println("the size of the tree is " + bt.Size());
    System.out.println("the height of the tree is " + bt.Height());
    System.out.println("*******先根(前序)[ABDECF]遍历*****************");
    bt.PreOrder(bt.root);
    System.out.println("*******中根(中序)[DBEACF]遍历*****************");
    bt.InOrder(bt.root);
    System.out.println("*******后根(后序)[DEBFCA]遍历*****************");
    bt.PostOrder(bt.root);
  }

}

 结果输出:
the size of the tree is 6
the height of the tree is 3
*******先根(前序)[ABDECF]遍历*****************
key:1--name:rootNode(A)
key:2--name:B
key:4--name:D
key:5--name:E
key:3--name:C
key:6--name:F
*******中根(中序)[DBEACF]遍历*****************
key:4--name:D
key:2--name:B
key:5--name:E
key:1--name:rootNode(A)
key:3--name:C
key:6--name:F
*******后根(后序)[DEBFCA]遍历*****************
key:4--name:D
key:5--name:E
key:2--name:B
key:6--name:F
key:3--name:C
key:1--name:rootNode(A)

 希望本文对学习JAVA程序设计的同学有所帮助。

相关文章

  • AsyncHttpClient的ConnectionSemaphore方法源码流程解读

    AsyncHttpClient的ConnectionSemaphore方法源码流程解读

    这篇文章主要为大家介绍了AsyncHttpClient的ConnectionSemaphore方法源码流程解读,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Jersey Restful接口如何获取参数的问题

    Jersey Restful接口如何获取参数的问题

    这篇文章主要介绍了Jersey Restful接口如何获取参数的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • java web SpringMVC后端传json数据到前端页面实例代码

    java web SpringMVC后端传json数据到前端页面实例代码

    本篇文章主要介绍了java web SpringMVC后端传json数据到前端页面实例代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下。
    2017-03-03
  • Java实现代码块耗时测算工具类

    Java实现代码块耗时测算工具类

    这篇文章主要为大家介绍了如何利用Java语言编写一个工具类,用来测算代码块的耗时,同时还能显示进度,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-05-05
  • Java模拟栈和队列数据结构的基本示例讲解

    Java模拟栈和队列数据结构的基本示例讲解

    这篇文章主要介绍了Java模拟栈和队列数据结构的基本示例,栈的后进先出和队列的先进先出是数据结构中最基础的知识,本文则又对Java实现栈和队列结构的方法进行了细分,需要的朋友可以参考下
    2016-04-04
  • Spring多数据源导致配置失效的解决

    Spring多数据源导致配置失效的解决

    这篇文章主要介绍了Spring多数据源导致配置失效的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-01-01
  • jar命令修改jar包中的application.yml配置文件

    jar命令修改jar包中的application.yml配置文件

    本文主要介绍了jar命令修改jar包中的application.yml配置文件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-08-08
  • java语法糖之jdk迭代的新特性汇总

    java语法糖之jdk迭代的新特性汇总

    什么是语法糖?泛型、自动装箱拆箱、变长参数、增强for循环、switch字符类型、lambda表达式等,这些其实都是语法糖。这篇文章主要给大家介绍了关于java语法糖之jdk迭代的新特性的相关资料,需要的朋友可以参考下
    2021-05-05
  • java语言图形用户登录界面代码

    java语言图形用户登录界面代码

    这篇文章主要为大家详细介绍了java语言图形用户登录界面代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-06-06
  • 使用Feign设置Token鉴权调用接口

    使用Feign设置Token鉴权调用接口

    这篇文章主要介绍了使用Feign设置Token鉴权调用接口,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-03-03

最新评论