布隆过滤器详解以及其在Java中的实际应用

 更新时间:2023年12月09日 15:42:51   作者:小威要向诸佬学习呀  
布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,这篇文章主要给大家介绍了关于布隆过滤器详解以及其在Java中的实际应用,需要的朋友可以参考下

前言

布隆过滤器一直是面试中的重点,本篇文章将深入探讨Java中的布隆过滤器的底层思想,包括它的工作原理、优缺点等。同时,我们将结合一个小实际案例,来给大家展示布隆过滤器在解决实际问题中的应用。

布隆过滤器简单介绍

在数据处理领域,我们经常需要判断一个元素是否在一个集合中。传统的数据结构如哈希表、树等可以提供精确的答案,但是在某些场景下,我们可能更关心查询效率而非精确性。布隆过滤器就是这样一种数据结构,它能在常数时间内判断一个元素是否可能在一个集合中,尽管有一定的误报率,但他的空间和时间效率远超过其他数据结构

布隆过滤器的底层思想

布隆过滤器主要由两个部分组成:一个长度为m的位数组和k个独立的哈希函数。当插入一个元素时,这个元素会被k个哈希函数映射到位数组的k个位置,并将这些位置设置为1。当查询一个元素时,同样使用这k个哈希函数映射到位数组的k个位置,如果这些位置中有任何一个为0,那么这个元素肯定不在集合中;如果所有位置都为1,那么这个元素可能在集合中。

布隆过滤器的优点在于它的查询效率特别高,是常数时间,而且空间效率也高于其他数据结构。

但是,它也存在一定的误报率,可能会将不在集合中的元素误判为在集合中。这种误报率可以通过增加位数组的长度或增加哈希函数的数量来降低,但是无法完全消除。

布隆过滤器简单应用

以之前做过的课设项目为例。我们可以使用Google的Guava库来实现布隆过滤器。

在此之前我们在项目中引入了Guava库的依赖。

然后,我们可以创建一个布隆过滤器实例,并且添加一些元素:

BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.forName("UTF-8")), expectedInsertions);
bloomFilter.put("element1");
bloomFilter.put("element2");

我们使用Guava库创建了一个布隆过滤器实例,而且指定了预期的插入元素数量。然后,我们添加了一些元素到布隆过滤器中。

布隆过滤器结合Redis应用

在实际项目中,我们可以使用布隆过滤器来解决一些实际问题。举一个经常使用到的栗子:

我们有一个Web应用,需要防止恶意用户通过大量的不存在的用户ID来查询用户信息,从而造成缓存穿透。那么我们就可以使用布隆过滤器来解决这个问题。

首先,我们需要在Redis中创建一个布隆过滤器来存储所有已注册的用户ID。当用户注册时,我们将用户ID添加到布隆过滤器中;当用户查询时,我们先检查布隆过滤器,如果用户ID不在布隆过滤器中,那么直接返回“用户不存在”;否则,我们继续查询数据库或缓存以获取用户信息。

我们可以使用Jedis库来操作Redis。代码如下:

Jedis jedis = new Jedis("localhost");
// 创建一个布隆过滤器并设置误报率
String key = "userIdsBloomFilter";
int expectedInsertions = 1000000; // 预计插入的元素数量
double falsePositiveProbability = 0.01; // 误报率
jedis.bfCreate(key, expectedInsertions, falsePositiveProbability);
// 添加已注册的用户ID到布隆过滤器中
jedis.bfAdd(key, "userId1");
jedis.bfAdd(key, "userId2");
...
// 查询用户ID是否在布隆过滤器中
boolean exists = jedis.bfExists(key, "userIdToQuery");
if (!exists) {
// 用户ID不存在,直接返回或进行其他处理
} else {
// 用户ID可能存在,继续查询数据库或缓存以获取用户信息
}

我们使用Jedis库创建了一个Redis客户端实例,并且在Redis中创建了一个布隆过滤器来存储已注册的用户ID。

然后,我们添加了一些已注册的用户ID到布隆过滤器中。当查询一个用户ID时,我们先检查这个用户ID是否在布隆过滤器中。如果不在,那么我们可以直接返回“用户不存在”;否则,我们继续查询数据库或缓存以获取用户信息。这样可以有效防止缓存穿透问题。

文章到这里就先结束了,感谢大佬的观看。希望读者通过本文的学习和以及实践可以更好地理解和应用这一高效数据结构来解决实际问题!

总结

到此这篇关于布隆过滤器详解以及其在Java中的实际应用的文章就介绍到这了,更多相关布隆过滤器在Java的应用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 如何让java只根据数据库表名自动生成实体类

    如何让java只根据数据库表名自动生成实体类

    今天给大家带来的知识是关于Java的,文章围绕着如何让java只根据数据库表名自动生成实体类展开,文中有非常详细的介绍,需要的朋友可以参考下
    2021-06-06
  • SpringBatch结合SpringBoot简单使用实现工资发放批处理操作方式

    SpringBatch结合SpringBoot简单使用实现工资发放批处理操作方式

    这篇文章主要介绍了SpringBatch结合SpringBoot简单使用实现工资发放批处理操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • SpringBoot项目中枚举类型字段与前端和数据库的交互方法

    SpringBoot项目中枚举类型字段与前端和数据库的交互方法

    最近做的这个项目中,用到了大量的枚举类,下面这篇文章主要给大家介绍了关于SpringBoot项目中枚举类型字段与前端和数据库的交互方法,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2024-07-07
  • Java后台返回和处理JSon数据的方法步骤

    Java后台返回和处理JSon数据的方法步骤

    这篇文章主要介绍了Java后台返回和处理JSon数据的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • Java替换(新增)JSON串里面的某个节点操作

    Java替换(新增)JSON串里面的某个节点操作

    这篇文章主要介绍了Java替换(新增)JSON串里面的某个节点操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-11-11
  • Spring Boot整合web层实现过程详解

    Spring Boot整合web层实现过程详解

    这篇文章主要介绍了Spring Boot整合web层实现过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-04-04
  • Elasticsearch中FST与前缀搜索应用实战解析

    Elasticsearch中FST与前缀搜索应用实战解析

    这篇文章主要为大家介绍了Elasticsearch中FST与前缀搜索应用实战解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • Java中常见的编码集问题总结

    Java中常见的编码集问题总结

    这篇文章主要为大家整理了一些Java中常见的编码集问题,文中的示例代码讲解详细,对我们深入理解Java有一定的帮助,感兴趣的小伙伴可以了解一下
    2023-02-02
  • SpringCloud Tencent 全套解决方案源码分析

    SpringCloud Tencent 全套解决方案源码分析

    Spring Cloud Tencent实现Spring Cloud标准微服务SPI,开发者可以基于Spring Cloud Tencent开发Spring Cloud微服务架构应用,Spring Cloud Tencent 的核心依托腾讯开源的一站式服务发现与治理平台 Polarismesh,实现各种分布式微服务场景,感兴趣的朋友一起看看吧
    2022-07-07
  • 详解Java如何优雅的实现字典翻译

    详解Java如何优雅的实现字典翻译

    当我们在Java应用程序中需要对字典属性进行转换返回给前端时,如何简单、方便、并且优雅的处理是一个重要问题。在本文中,我们将介绍如何使用Java中的序列化机制来优雅地实现字典值的翻译,从而简化开发
    2023-04-04

最新评论