Java生成订单号或唯一id的高并发方案(4种方法)

 更新时间:2024年01月22日 15:54:06   作者:吴名氏.  
本文主要介绍了Java生成订单号或唯一id的高并发方案,包括4种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1、直接使用uuid

public static String getUUID() {
        String replaceUUID = UUID.randomUUID().toString().replace("-", "");
        return replaceUUID;
    }

但由于生成的数据没有规律性,并且太长;

测试:循环1000w次

测试代码:

    public static void main(String[] args) {
        long startTime = System.currentTimeMillis();
        Set set=new HashSet<>();
        for(int i=0;i<10000000;i++){
            String uuid = getUUID();
            System.out.println("uuid---"+i+"======="+uuid);
            set.add(uuid);
        }
        long endTime = System.currentTimeMillis();
        System.out.println("set.size():"+set.size());
        System.out.println("endTime-startTime:"+(endTime-startTime));
    }

控制台提示:

2、用时间(精确到毫秒)+随机数

         //时间(精确到毫秒)
        DateTimeFormatter ofPattern = DateTimeFormatter.ofPattern("yyyyMMddHHmmssSSS");
        String localDate = LocalDateTime.now().format(ofPattern);
        //随机数
        String randomNumeric = RandomStringUtils.randomNumeric(8);

for循环1000w次,发现重复数据太多。因此光靠随机数并不可靠。

3、使用 时间(精确到毫秒)+随机数+用户id(业务id)

注意:如果是类似用户id,项目当中集成了权限框架,使用工具类获取即可,就不用传参了

   /**
     * 生成订单号(25位):时间(精确到毫秒)+3位随机数+5位用户id
     */
    public static synchronized  String getOrderNum(Long userId) {
        //时间(精确到毫秒)
        DateTimeFormatter ofPattern = DateTimeFormatter.ofPattern("yyyyMMddHHmmssSSS");
        String localDate = LocalDateTime.now().format(ofPattern);
        //3位随机数
        String randomNumeric = RandomStringUtils.randomNumeric(3);
        //5位用户id
        int subStrLength = 5;
        String sUserId = userId.toString();
        int length = sUserId.length();
        String str;
        if (length >= subStrLength) {
            str = sUserId.substring(length - subStrLength, length);
        } else {
            str = String.format("%0" + subStrLength + "d", userId);
        }
        String orderNum = localDate + randomNumeric + str;
        log.info("订单号:{}", orderNum);
        return orderNum;
    }

在2的基础上改造,加入用户的id等其他的业务id。

4.Java实现Snowflake算法的方案(高并发下,推荐使用这个)

package com.lucifer.order.util.idgenerate;
 
/**
 * Twitter_Snowflake<br>
 * SnowFlake的结构如下(每部分用-分开):<br>
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
 * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
 * 加起来刚好64位,为一个Long型。<br>
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
 *
 * @author Lucifer
 */
public class SnowFlake {
 
    // ==============================Fields===========================================
    /**
     * 开始时间截 (2018-07-03)
     */
 
    private final long twepoch = 1530607760000L;
 
    /**
     * 机器id所占的位数
     */
    private final long workerIdBits = 5L;
 
    /**
     * 数据标识id所占的位数
     */
    private final long datacenterIdBits = 5L;
 
    /**
     * 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
     */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
 
    /**
     * 支持的最大数据标识id,结果是31
     */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 
    /**
     * 序列在id中占的位数
     */
    private final long sequenceBits = 12L;
 
    /**
     * 机器ID向左移12位
     */
    private final long workerIdShift = sequenceBits;
 
    /**
     * 数据标识id向左移17位(12+5)
     */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
 
    /**
     * 时间截向左移22位(5+5+12)
     */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
 
    /**
     * 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
     */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
 
    /**
     * 工作机器ID(0~31)
     */
    private long workerId;
 
    /**
     * 数据中心ID(0~31)
     */
    private long datacenterId;
 
    /**
     * 毫秒内序列(0~4095)
     */
    private long sequence = 0L;
 
    /**
     * 上次生成ID的时间截
     */
    private long lastTimestamp = -1L;
 
    //==============================Constructors=====================================
 
    /**
     * 构造函数
     *
     * @param workerId     工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowFlake(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
 
    // ==============================Methods==========================================
 
    /**
     * 获得下一个ID (该方法是线程安全的)
     *
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
 
        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
 
        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }
 
        //上次生成ID的时间截
        lastTimestamp = timestamp;
 
        //移位并通过或运算拼到一起组成64位的ID
        return (((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift)
                | sequence);
    }
 
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     *
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    /**
     * 返回以毫秒为单位的当前时间
     *
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }
 
    //==============================Test=============================================
 
    /**
     * 测试
     */
    public static void main(String[] args) {
        long startTime = System.currentTimeMillis();
        SnowFlake idWorker = new SnowFlake(0, 0);
        Set set = new HashSet();
        for (int i = 0; i < 10000000; i++) {
            long id = idWorker.nextId();
            set.add(id);
            System.out.println("id----"+i+":"+id);
        }
        long endTime = System.currentTimeMillis();
        System.out.println("set.size():" + set.size());
        System.out.println("endTime-startTime:" + (endTime - startTime));
    }
}

也可以在雪花算法生成的id的基础上拼接日期,不过性能有所损耗。 

 public static String timestampConversionDate(String param) {
        Instant timestamp = Instant.ofEpochMilli(new Long(param));
        System.out.println("timestamp:"+param);
        LocalDateTime localDateTime = LocalDateTime.ofInstant(timestamp, ZoneId.systemDefault());
        String format = localDateTime.format(DateTimeFormatter.ofPattern("yyyyMMdd"));
        return format;
    }

测试1:

循环1000w次,发现并无重复

测试2:100个线程,每个线程负责生成10w个id

//多线程测试
public static void main(String[] args) throws InterruptedException {
        long startTime = System.currentTimeMillis();
        CountDownLatch countDownLatch=new CountDownLatch(10000000);
        final SnowFlake idWorker = new SnowFlake(0, 0);
        Set set = Collections.synchronizedSet(new HashSet());
        for (int i = 0; i < 100; i++) {
            Thread thread = new Thread(() -> {
                for (int i1 = 0; i1 < 100000; i1++) {
                    long id = idWorker.nextId();
                    System.out.println("id:"+id);
                    set.add(id);
                    countDownLatch.countDown();
                }
            });
            thread.start();
        }
        countDownLatch.await();
        long endTime = System.currentTimeMillis();
        System.out.println("set.size():" + set.size());
        System.out.println("endTime-startTime:" + (endTime - startTime));
    }

到此这篇关于Java生成订单号或唯一id的高并发方案(4种方法)的文章就介绍到这了,更多相关Java生成订单号或唯一id内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Java日常练习题,每天进步一点点(51)

    Java日常练习题,每天进步一点点(51)

    下面小编就为大家带来一篇Java基础的几道练习题(分享)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧,希望可以帮到你
    2021-08-08
  • Springboot为什么加载不上application.yml的配置文件

    Springboot为什么加载不上application.yml的配置文件

    这篇文章主要介绍了Springboot为什么加载不上application.yml的配置文件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • java IP地址网段计算的示例代码

    java IP地址网段计算的示例代码

    这篇文章主要介绍了java IP地址网段计算的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • java使用dbcp2数据库连接池

    java使用dbcp2数据库连接池

    这篇文章主要为大家详细介绍了java使用dbcp2数据库连接池的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-10-10
  • SpringMvc自动装箱及GET请求参数原理解析

    SpringMvc自动装箱及GET请求参数原理解析

    这篇文章主要介绍了SpringMvc自动装箱及GET请求参数原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • SpringBoot3集成swagger文档的使用方法

    SpringBoot3集成swagger文档的使用方法

    本文介绍了Swagger的诞生背景、主要功能以及如何在Spring Boot 3中集成Swagger文档,Swagger可以帮助自动生成API文档,实现与代码同步,并提供交互式测试功能,使用方法包括导入依赖、配置文档、使用常见注解以及访问生成的Swagger UI和文档,感兴趣的朋友跟随小编一起看看吧
    2025-01-01
  • Java基于swing实现的弹球游戏代码

    Java基于swing实现的弹球游戏代码

    这篇文章主要介绍了Java基于swing实现的弹球游戏代码,包含了窗体界面设计与游戏的逻辑功能处理,具有不错的参考借鉴价值,需要的朋友可以参考下
    2014-11-11
  • Java判断闰年的2种方法示例

    Java判断闰年的2种方法示例

    这篇文章主要给大家介绍了关于Java判断闰年的2种方法,文中通过示例代码介绍的非常详细,对大家学习或者使用Java具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-09-09
  • Java深入讲解static操作符

    Java深入讲解static操作符

    static关键字基本概念我们可以一句话来概括:方便在没有创建对象的情况下来进行调用。也就是说:被static关键字修饰的不需要创建对象去调用,直接根据类名就可以去访问,让我们来了解一下你可能还不知道情况
    2022-07-07
  • Eclipse快捷键使用小结

    Eclipse快捷键使用小结

    Eclipse是用java的同行必不可少的工具,我总结了一下它的快捷键,太常用的ctrl+单击、ctrl+shift+F、Ctrl+1等我就不细说了,主要是方便查看。下边小编就详细的为大家介绍一下
    2013-07-07

最新评论