SpringBoot使用Prometheus采集自定义指标数据的方法详解

 更新时间:2024年10月11日 11:20:09   作者:BasicLab基础架构实验室  
随着微服务在生产环境大规模部署和应用,随之而来也带来了新的问题,其中比较关键的就是关于微服务的运维和监控,本文将结合微服务运维监控中的指标监控进行详细的说明,需要的朋友可以参考下

一、我们需要什么指标

对于DDD、TDD等,大家比较熟悉了,但是对于MDD可能就比较陌生了。MDD是Metrics-Driven Development的缩写,主张开发过程由指标驱动,通过实用指标来驱动快速、精确和细粒度的软件迭代。MDD可使所有可以测量的东西都得到量化和优化,进而为整个开发过程带来可见性,帮助相关人员快速、准确地作出决策,并在发生错误时立即发现问题并修复。依照MDD的理念,在需求阶段就应该考虑关键指标,在应用上线后通过指标了解现状并持续优化。有一些基于指标的方法 论,建议大家了解一下:

Google的四大黄金指标:延迟Latency、流量Traffic、错误Errors、饱和度Saturation
Netflix的USE方法:使用率Utilization、饱和度Saturation、错误Error
WeaveCloud的RED方法:速率Rate、错误Errors、耗时Duration

二、在SrpingBoot中引入prometheus

SpringBoot2.x集成Prometheus非常简单,首先引入maven依赖:

io.micrometer
micrometer-registry-prometheus
1.7.3
        
        
io.github.mweirauch
micrometer-jvm-extras
0.2.2

然后,在application.properties中将prometheus的endpoint放出来。

management:
  endpoints:
    web:
      exposure:
        include: info,health,prometheus

接下来就可以进行指标埋点了,Prometheus的四种指标类型此处不再赘述,请自行学习。一般指标埋点代码实现上有两种形式:AOP、侵入式,建议尽量使用AOP记录指标,对于无法使用aop的场景就只能侵入代码了。常用的AOP方式有:

  • @Aspect(通用)
  • HandlerInterceptor (SpringMVC的拦截器)
  • ClientHttpRequestInterceptor (RestTemplate的拦截器)
  • DubboFilter (dubbo接口)

我们选择通用的@Aspect,结合自定义指标注解来实现。首先自定义指标注解:

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface MethodMetrics {
    String name() default "";
    String desc() default "";
    String[] tags() default {};
    //是否记录时间间隔
    boolean withoutDuration() default false;
}

然后是切面实现:

@Aspect
public class PrometheusAnnotationAspect {
 
    @Autowired
    private MeterRegistry meterRegistry;
 
    @Pointcut("@annotation(com.smac.prometheus.annotation.MethodMetrics)")
    public void pointcut() {}
 
    @Around(value = "pointcut()")
    public Object process(ProceedingJoinPoint joinPoint) throws Throwable {
        Method targetMethod = ((MethodSignature) joinPoint.getSignature()).getMethod();
        Method currentMethod = ClassUtils.getUserClass(joinPoint.getTarget().getClass()).getDeclaredMethod(targetMethod.getName(), targetMethod.getParameterTypes());
        if (currentMethod.isAnnotationPresent(MethodMetrics.class)) {
            MethodMetrics methodMetrics = currentMethod.getAnnotation(MethodMetrics.class);
            return processMetric(joinPoint, currentMethod, methodMetrics);
        } else {
            return joinPoint.proceed();
        }
    }
 
    private Object processMetric(ProceedingJoinPoint joinPoint, Method currentMethod, MethodMetrics methodMetrics) {
        String name = methodMetrics.name();
        if (!StringUtils.hasText(name)) {
            name = currentMethod.getName();
        }
        String desc = methodMetrics.desc();
        if (!StringUtils.hasText(desc)) {
            desc = currentMethod.getName();
        }
        //不需要记录时间
        if (methodMetrics.withoutDuration()) {
            Counter counter = Counter.builder(name).tags(methodMetrics.tags()).description(desc).register(meterRegistry);
            try {
                return joinPoint.proceed();
            } catch (Throwable e) {
                throw new IllegalStateException(e);
            } finally {
                counter.increment();
            }
        }
        //需要记录时间(默认)
        Timer timer = Timer.builder(name).tags(methodMetrics.tags()).description(desc).register(meterRegistry);
        return timer.record(() -> {
            try {
                return joinPoint.proceed();
            } catch (Throwable e) {
                throw new IllegalStateException(e);
            }
        });
    }
}

代码很容易,没什么可说明的,接下来就是在需要记监控的地方加上这个注解就行,比如:

@MethodMetrics(name="sms_send",tags = {"vendor","aliyun"})
public void send(String mobile, SendMessage message) throws Exception {
    ...
}

至此,aop形式的指标实现方式就完成了。如果是侵入式的话,直接使用meterRegistry就行:

meterRegistry.counter("sms.send","vendor","aliyun").increment();

启动服务,打开http://localhost:8080/actuator/prometheus查看指标。

三、高级指标之分位数

分位数(P50/P90/P95/P99)是我们常用的一个性能指标,Prometheus提供了两种解决方案:        

client侧计算方案

summery类型,设置percentiles,在本地计算出Pxx,作为指标的一个tag被直接收集。

Timer timer = Timer.builder("sms.send").publishPercentiles(0.5, 0.9, 0.95,0.99).register(meterRegistry);
timer.record(costTime, TimeUnit.MILLISECONDS);

会出现四个带quantile的指标,如图:

server侧计算方案

开启histogram,将所有样本放入buckets中,在server侧通过histogram_quantile函数对buckets进行实时计算得出。注意:histogram采用了线性插值法,buckets的划分对误差的影响比较大,需合理设置。

Timer timer = Timer.builder("sms.send")
                .publishPercentileHistogram(true)
                .serviceLevelObjectives(Duration.ofMillis(10),Duration.ofMillis(20),Duration.ofMillis(50))
                .minimumExpectedValue(Duration.ofMillis(1))
                .maximumExpectedValue(Duration.ofMillis(100))
                .register(meterRegistry);
timer.record(costTime, TimeUnit.MILLISECONDS);

会出现一堆xxxx_bucket的指标,如图:

然后,使用

histogram_quantile(0.95, rate(sms_send_seconds_bucket[5m]))

就可以看到P95的指标了,如图:

结论:

方案1适用于单机或只关心本地运行情况的指标,比如gc时间、定时任务执行时间、本地缓存更新时间等;

方案2则适用于分布式环境下的整体运行情况的指标,比如搜索接口的响应时间、第三方接口的响应时间等。

相关文章

  • Spring Boot中自动执行sql脚本的实现

    Spring Boot中自动执行sql脚本的实现

    这篇文章主要介绍了Spring Boot中自动执行sql脚本的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • SpringBoot项目URL访问异常的问题处理

    SpringBoot项目URL访问异常的问题处理

    这篇文章主要介绍了SpringBoot项目URL访问异常的问题处理方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-07-07
  • 详解如何在spring中创建全局异常处理器

    详解如何在spring中创建全局异常处理器

    全局异常处理器在实际项目开发中是一个很重要的工具,对保证代码的正常运行有很重要的作用,所以下面来讲一下如何在spring中创建一个全局异常处理器,感兴趣的的朋友可以参考下
    2023-12-12
  • Java基础入门语法--String类

    Java基础入门语法--String类

    字符串广泛应用在Java编程中,在Java中字符串属于对象,Java 提供了String类来创建和操作字符串,今天给大家介绍Java基础入门语法--String类的相关知识,感兴趣的朋友一起看看吧
    2021-06-06
  • SpringBoot结合ProGuard实现代码混淆(最新版)

    SpringBoot结合ProGuard实现代码混淆(最新版)

    这篇文章主要介绍了SpringBoot结合ProGuard实现代码混淆(最新版),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • 浅谈Java生命周期管理机制

    浅谈Java生命周期管理机制

    最近有位细心的朋友在阅读笔者的文章时,对java类的生命周期问题有一些疑惑,笔者打开百度搜了一下相关的问题,看到网上的资料很少有把这个问题讲明白的,主要是因为目前国内java方面的教材大多只是告诉你“怎样做”,但至于“为什么这样做”却不多说
    2016-01-01
  • Java如何获取视频文件的视频时长

    Java如何获取视频文件的视频时长

    文章介绍了如何使用Java获取视频文件的视频时长,包括导入maven依赖和代码案例,同时,也讨论了在运行过程中遇到的SLF4J加载问题,并给出了解决方案
    2025-02-02
  • spring boot springMVC扩展配置实现解析

    spring boot springMVC扩展配置实现解析

    这篇文章主要介绍了spring boot springMVC扩展配置实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • Java spring注解@PostConstruct实战案例讲解

    Java spring注解@PostConstruct实战案例讲解

    我们在Spring项目中经常会遇到@PostConstruct注解,可能有的伙伴对这个注解很陌生,下面这篇文章主要给大家介绍了关于Java spring注解@PostConstruct实战案例讲解的相关资料,需要的朋友可以参考下
    2023-12-12
  • 在java中http请求带cookie的例子

    在java中http请求带cookie的例子

    今天小编就为大家分享一篇在java中http请求带cookie的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08

最新评论