实现SQL Server 原生数据从XML生成JSON数据的实例代码

 更新时间:2017年03月25日 14:48:39   作者:feng1456  
这篇文章主要介绍了实现SQL Server 原生数据从XML生成JSON数据的实例代码的相关资料,需要的朋友可以参考下

实现SQL Server 原生数据从XML生成JSON数据的实例代码

   SQL Server 是关系数据库,查询结果通常都是数据集,但是在一些特殊需求下,我们需要XML数据,最近这些年,JSON作为WebAPI常用的交换数据格式,那么数据库如何生成JSON数据呢?今天就写了一个DEMO.

       1.创建表及测试数据

SET NOCOUNT ON 
 
IF OBJECT_ID('STATS') IS NOT NULL DROP TABLE STATS 
IF OBJECT_ID('STATIONS') IS NOT NULL DROP TABLE STATIONS 
IF OBJECT_ID('OPERATORS') IS NOT NULL DROP TABLE OPERATORS 
IF OBJECT_ID('REVIEWS') IS NOT NULL DROP TABLE REVIEWS 
 
-- Create and populate table with Station 
CREATE TABLE STATIONS(ID INTEGER PRIMARY KEY, CITY NVARCHAR(20), STATE CHAR(2), LAT_N REAL, LONG_W REAL); 
INSERT INTO STATIONS VALUES (13, 'Phoenix', 'AZ', 33, 112); 
INSERT INTO STATIONS VALUES (44, 'Denver', 'CO', 40, 105); 
INSERT INTO STATIONS VALUES (66, 'Caribou', 'ME', 47, 68); 
 
-- Create and populate table with Operators 
CREATE TABLE OPERATORS(ID INTEGER PRIMARY KEY, NAME NVARCHAR(20), SURNAME NVARCHAR(20)); 
INSERT INTO OPERATORS VALUES (50, 'John "The Fox"', 'Brown'); 
INSERT INTO OPERATORS VALUES (51, 'Paul', 'Smith'); 
INSERT INTO OPERATORS VALUES (52, 'Michael', 'Williams');  
 
-- Create and populate table with normalized temperature and precipitation data 
CREATE TABLE STATS ( 
    STATION_ID INTEGER REFERENCES STATIONS(ID), 
    MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12), 
    TEMP_F REAL CHECK (TEMP_F BETWEEN -80 AND 150), 
    RAIN_I REAL CHECK (RAIN_I BETWEEN 0 AND 100), PRIMARY KEY (STATION_ID, MONTH)); 
INSERT INTO STATS VALUES (13, 1, 57.4, 0.31); 
INSERT INTO STATS VALUES (13, 7, 91.7, 5.15); 
INSERT INTO STATS VALUES (44, 1, 27.3, 0.18); 
INSERT INTO STATS VALUES (44, 7, 74.8, 2.11); 
INSERT INTO STATS VALUES (66, 1, 6.7, 2.10); 
INSERT INTO STATS VALUES (66, 7, 65.8, 4.52); 
 
-- Create and populate table with Review 
CREATE TABLE REVIEWS(STATION_ID INTEGER,STAT_MONTH INTEGER,OPERATOR_ID INTEGER)  
insert into REVIEWS VALUES (13,1,50) 
insert into REVIEWS VALUES (13,7,50) 
insert into REVIEWS VALUES (44,7,51) 
insert into REVIEWS VALUES (44,7,52) 
insert into REVIEWS VALUES (44,7,50) 
insert into REVIEWS VALUES (66,1,51) 
insert into REVIEWS VALUES (66,7,51) 

2.查询结果集

select   STATIONS.ID    as ID, 
      STATIONS.CITY   as City, 
      STATIONS.STATE  as State, 
      STATIONS.LAT_N  as LatN, 
      STATIONS.LONG_W  as LongW, 
      STATS.MONTH    as Month, 
      STATS.RAIN_I   as Rain, 
      STATS.TEMP_F   as Temp, 
    OPERATORS.NAME  as Name, 
    OPERATORS.SURNAME as Surname 
from    stations  
inner join stats   on stats.STATION_ID=STATIONS.ID  
left join reviews  on reviews.STATION_ID=stations.id  
           and reviews.STAT_MONTH=STATS.[MONTH] 
left join OPERATORS on OPERATORS.ID=reviews.OPERATOR_ID 

结果:

2.查询xml数据

select stations.*, 
    (select stats.*,  
        (select OPERATORS.*  
        from  OPERATORS  
        inner join reviews on OPERATORS.ID=reviews.OPERATOR_ID  
        where reviews.STATION_ID=STATS.STATION_ID  
        and  reviews.STAT_MONTH=STATS.MONTH  
        for xml path('operator'),type 
        ) operators 
    from STATS  
    where STATS.STATION_ID=stations.ID  
    for xml path('stat'),type 
    ) stats  
from  stations  
for  xml path('station'),type 

结果:

<station> 
 <ID>13</ID> 
 <CITY>Phoenix</CITY> 
 <STATE>AZ</STATE> 
 <LAT_N>3.3000000e+001</LAT_N> 
 <LONG_W>1.1200000e+002</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>13</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>5.7400002e+001</TEMP_F> 
   <RAIN_I>3.1000000e-001</RAIN_I> 
   <operators> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
  <stat> 
   <STATION_ID>13</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>9.1699997e+001</TEMP_F> 
   <RAIN_I>5.1500001e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 
<station> 
 <ID>44</ID> 
 <CITY>Denver</CITY> 
 <STATE>CO</STATE> 
 <LAT_N>4.0000000e+001</LAT_N> 
 <LONG_W>1.0500000e+002</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>44</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>2.7299999e+001</TEMP_F> 
   <RAIN_I>1.8000001e-001</RAIN_I> 
  </stat> 
  <stat> 
   <STATION_ID>44</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>7.4800003e+001</TEMP_F> 
   <RAIN_I>2.1099999e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
    <operator> 
     <ID>52</ID> 
     <NAME>Michael</NAME> 
     <SURNAME>Williams</SURNAME> 
    </operator> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 
<station> 
 <ID>66</ID> 
 <CITY>Caribou</CITY> 
 <STATE>ME</STATE> 
 <LAT_N>4.7000000e+001</LAT_N> 
 <LONG_W>6.8000000e+001</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>66</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>6.6999998e+000</TEMP_F> 
   <RAIN_I>2.0999999e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
  <stat> 
   <STATION_ID>66</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>6.5800003e+001</TEMP_F> 
   <RAIN_I>4.5200000e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 

3.如何生成JSON数据

1)创建辅助函数

CREATE FUNCTION [dbo].[qfn_XmlToJson](@XmlData xml) 
RETURNS nvarchar(max) 
AS 
BEGIN 
 declare @m nvarchar(max) 
 SELECT @m='['+Stuff 
 ( 
   (SELECT theline from 
  (SELECT ','+' {'+Stuff 
    ( 
       (SELECT ',"'+coalesce(b.c.value('local-name(.)', 'NVARCHAR(255)'),'')+'":'+ 
           case when b.c.value('count(*)','int')=0  
           then dbo.[qfn_JsonEscape](b.c.value('text()[1]','NVARCHAR(MAX)')) 
           else dbo.qfn_XmlToJson(b.c.query('*')) 
           end 
         from x.a.nodes('*') b(c)                                 
         for xml path(''),TYPE).value('(./text())[1]','NVARCHAR(MAX)') 
        ,1,1,'')+'}' 
     from @XmlData.nodes('/*') x(a) 
    ) JSON(theLine) 
    for xml path(''),TYPE).value('.','NVARCHAR(MAX)') 
   ,1,1,'')+']' 
  return @m 
END 

CREATE FUNCTION [dbo].[qfn_JsonEscape](@value nvarchar(max) ) 
returns nvarchar(max) 
as begin 
  
 if (@value is null) return 'null' 
 if (TRY_PARSE( @value as float) is not null) return @value 
 
 set @value=replace(@value,'\','\\') 
 set @value=replace(@value,'"','\"') 
 
 return '"'+@value+'"' 
end 

3)查询sql

select dbo.qfn_XmlToJson 
( 
 ( 
  select stations.ID,stations.CITY,stations.STATE,stations.LAT_N,stations.LONG_W , 
     (select stats.*,  
          (select OPERATORS.*  
          from  OPERATORS inner join reviews  
          on   OPERATORS.ID=reviews.OPERATOR_ID 
          where reviews.STATION_ID=STATS.STATION_ID  
          and  reviews.STAT_MONTH=STATS.MONTH  
          for xml path('operator'),type 
          ) operators 
      from STATS  
      where STATS.STATION_ID=stations.ID for xml path('stat'),type 
     ) stats  
   from stations for xml path('stations'),type 
  ) 
) 

结果:

[ {"ID":13,"CITY":"Phoenix","STATE":"AZ","LAT_N":3.3000000e+001,"LONG_W"
:1.1200000e+002,"stats":[ {"STATION_ID":13,"MONTH":1,"TEMP_F":5.7400002e+001,"
RAIN_I":3.1000000e-001,"operators":[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]},
 {"STATION_ID":13,"MONTH":7,"TEMP_F":9.1699997e+001,"RAIN_I":5.1500001e+000,"operators":
[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":44,"CITY":"Denver",
"STATE":"CO","LAT_N":4.0000000e+001,"LONG_W":1.0500000e+002,"stats":[ {"STATION_ID":44,
"MONTH":1,"TEMP_F":2.7299999e+001,"RAIN_I":1.8000001e-001}, {"STATION_ID":44,"MONTH":7,
"TEMP_F":7.4800003e+001,"RAIN_I":2.1099999e+000,"operators":[ {"ID":51,"NAME":"Paul",
"SURNAME":"Smith"}, {"ID":52,"NAME":"Michael","SURNAME":"Williams"}, {"ID":50,"NAME"
:"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":66,"CITY":"Caribou","STATE":"ME","LAT_N":
4.7000000e+001,"LONG_W":6.8000000e+001,"stats":[ {"STATION_ID":66,"MONTH":1,"TEMP
_F":6.6999998e+000,"RAIN_I":2.0999999e+000,"operators":[ {"ID":51,"NAME":"Paul","
SURNAME":"Smith"}]}, {"STATION_ID":66,"MONTH":7,"TEMP_F":6.5800003e+001,"RAIN_I":
4.5200000e+000,"operators":[ {"ID":51,"NAME":"Paul","SURNAME":"Smith"}]}]}] 

总结:

JSON作为灵活的Web通信交换架构,如果把配置数据存放在数据库中,直接获取JSON,那配置就会非常简单了,也能够大量减轻应用服务器的压力!

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

  • SQL Server中.BAK 文件损坏的原因及解决方法

    SQL Server中.BAK 文件损坏的原因及解决方法

    在 SQL Server 中,备份通常存储在扩展名为 .BAK 的文件中,当服务器或数据库文件发生事故或问题需要恢复数据时,备份非常有用,但是,SQL 数据库备份 (.BAK) 文件也可能由于各种因素而损坏,本文介绍了SQL Server .BAK 文件损坏的解决方法,需要的朋友可以参考下
    2024-08-08
  • SqlServer批量备份多个数据库且删除3天前的备份

    SqlServer批量备份多个数据库且删除3天前的备份

    这篇文章主要介绍了SqlServer批量备份多个数据库且删除3天前的备份,需要的朋友可以参考下
    2017-09-09
  • SQLServer查询历史执行记录的方法实现

    SQLServer查询历史执行记录的方法实现

    有的时候,需要知道近段时间SQLSERVER执行了什么语句,本文主要介绍了SQLServer查询历史执行记录的方法实现,具有一定的参考价值,感兴趣的可以了解一下
    2023-09-09
  • 使用BULK INSERT大批量导入数据 SQLSERVER

    使用BULK INSERT大批量导入数据 SQLSERVER

    使用BULK INSERT大批量导入数据 SQLSERVER,需要的朋友可以参考下。
    2011-12-12
  • SQL Server中将数据导出为XML和Json方法分享

    SQL Server中将数据导出为XML和Json方法分享

    这篇文章主要介绍了SQL Server中将数据导出为XML和Json方法分享,本文使用PowerShell中的BCP命令实现导出为文件,需要的朋友可以参考下
    2015-02-02
  • SQL Server免费版的安装以及使用SQL Server Management Studio(SSMS)连接数据库的图文方法

    SQL Server免费版的安装以及使用SQL Server Management Studio(SSMS)连接数据库的

    这篇文章主要介绍了SQL Server免费版的安装以及使用SQL Server Management Studio(SSMS)连接数据库的图文方法,需要的朋友可以参考下
    2020-02-02
  • sql server中的触发器用法实例详解

    sql server中的触发器用法实例详解

    这篇文章主要给大家介绍了关于sql server中触发器用法的相关资料,SQL Server触发器是一种特殊类型的存储过程,它们在数据库中的表上自动执行,需要的朋友可以参考下
    2024-03-03
  • 详解SQL报错盲注

    详解SQL报错盲注

    这篇文章主要介绍了SQL报错盲注详解,包括SQL报错函数,SQL报错盲注payload构造,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • SQL SERVER中SELECT和SET赋值相同点与不同点(推荐)

    SQL SERVER中SELECT和SET赋值相同点与不同点(推荐)

    SELECT和SET在SQL SERVER中都可以用来对变量进行赋值,但其用法和效果在一些细节上有些不同。今天小编给大家分享SQL SERVER中SELECT和SET赋值相同点与不同点,感兴趣的朋友一起看看吧
    2019-12-12
  • Sql Server 压缩数据库日志文件的方法

    Sql Server 压缩数据库日志文件的方法

    Sql Server 日志 _log.ldf文件太大,数据库文件有500g,日志文件也达到了500g,占用磁盘空间过大,且可能影响程序性能,需要压缩日志文件,下面小编给大家讲解下Sql Server 压缩数据库日志文件的方法,感兴趣的朋友一起看看吧
    2022-11-11

最新评论