mysql中批量插入数据(1万、10万、100万、1000万、1亿级别)

 更新时间:2022年08月15日 09:39:41   作者:回忆灬似水流年  
本文主要介绍了mysql中批量插入数据(1万、10万、100万、1000万、1亿级别),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

硬件:windows7+8G内存+i3-4170处理器+4核CPU

首先贴上数据库的操作类BaseDao:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.List;
 
import com.lk.entity.TUser;
 
public class BaseDao {
    private static ConfigManager cm = ConfigManager.getInstance();
 
    private static String Driver = null;
    private static String URL = null;
    private static String USER = null;
    private static String PWD = null;
 
    private static Connection conn = null;
    private static PreparedStatement psmt = null;
    public ResultSet rs = null;
    public int row = 0;
 
    static {
        Driver = cm.getString("DRIVER");
        URL = cm.getString("URL");
        USER = cm.getString("USER");
        PWD = cm.getString("PWD");
        try {
            Class.forName(Driver);
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
        getConnection();
        try {
            conn.setAutoCommit(false);
            psmt = conn.prepareStatement("");
        } catch (SQLException e) {
            e.printStackTrace();
        }
    }
 
    private static Connection getConnection() {
        try {
            conn = DriverManager.getConnection(URL, USER, PWD);
        } catch (SQLException e) {
            e.printStackTrace();
        }
        return conn;
    }
 
    /**
     * 多条记录插入操作
     * flag是为了判断是否是插入的最后一个记录
     */
    public boolean affectRowMore(String sql, List<TUser> list, long flag) {
        try {
            psmt = conn.prepareStatement(sql);
            for (TUser tUser : list) {
                psmt.setLong(1, tUser.getId());
                psmt.setString(2, tUser.getName());
                psmt.setInt(3, tUser.getSex());
                psmt.setString(4, tUser.getPhone());
                psmt.setString(5, tUser.getPassword());
                // 添加执行sql
                psmt.addBatch();
            }
            // 执行操作
            int[] counts = psmt.executeBatch(); // 执行Batch中的全部语句
            conn.commit(); // 提交到数据库
            for (int i : counts) {
                if (i == 0) {
                    conn.rollback();
                }
            }
            closeAll(flag);
        } catch (SQLException e) {
            e.printStackTrace();
            return false;
        }
        return true;
    }
 
    /**
     * 多条记录插入操作
     */
    public boolean affectRowMore1(String sql, long flag) {
        try {
            psmt.addBatch(sql);
            // 执行操作
            int[] counts = psmt.executeBatch(); // 执行Batch中的全部语句
            conn.commit(); // 提交到数据库
            for (int i : counts) {
                if (i == 0) {
                    conn.rollback();
                    return false;
                }
            }
            closeAll(flag);
        } catch (SQLException e) {
            e.printStackTrace();
            return false;
        }
        return true;
    }
 
    public void closeAll(long flag) {
        try {
            if (conn != null && flag == -1) {
                // 在完成批量操作后恢复默认的自动提交方式,提高程序的可扩展性
                conn.setAutoCommit(true);
                conn.close();
            }
            if (psmt != null && flag == -1) {
                psmt.close();
            }
            if (rs != null) {
                rs.close();
            }
        } catch (SQLException e) {
            e.printStackTrace();
        }
    }
}

方法一:

通过BaseDao中的affectRowMore方法进行插入,插入的速度如下所示:

     * 一万条数据(通过多条添加)
     * 生成1万条数据共花费978毫秒
     * 生成10万条数据共花费5826毫秒
     * 生成100万条数据共花费54929毫秒
     * 生成1000万条数据共花费548640毫秒
     * 生成1亿条数据(因为数字过大,没有计算)

public void insertBenchMark() {
        long start = System.currentTimeMillis();
        List<TUser> list = new ArrayList<>();
        long row = 1;
        for (int j = 0; j < 1000; j++) {
            for (int i = 0; i < 10000; i++) {
                String uuid = UUID.randomUUID().toString();
                String name = uuid.substring(0, 4);
                int sex = -1;
                if(Math.random() < 0.51) {
                    sex = 1;
                }else {
                    sex = 0;
                }
                String phone = (String) RandomValue.getAddress().get("tel");
                list.add(new TUser(row,name, sex, phone, uuid));
                row++;
            }
            int flag = 1;
            if(j==999) {
                flag = -1;
            }
            //封装好的
            boolean b = userDao.insertMore(list,flag);
            if(!b) {
                System.out.println("出错了----");
                System.exit(0);
            }else {
                list.clear();
            }
        }
        long end = System.currentTimeMillis();
        System.out.println("生成1000万条数据共花费"+(end-start)+"毫秒");
    }

public boolean insertMore(List<TUser> list,long flag) {
        String sql = "insert into tuser(id,name,sex,phone,password) values(?,?,?,?,?)";
        return affectRowMore(sql,list,flag);
    }

方法二:

通过BaseDao中的affectRowMore1方法进行数据的插入操作,插入的速度如下:

     * 通过拼接语句实现多条添加
     * 生成1万条数据共花费225毫秒
     * 生成10万条数据共花费1586毫秒
     * 生成100万条数据共花费14017毫秒
     * 生成1000万条数据共花费152127毫秒
     * 生成1亿条数据(因为数字过大,没有计算)

public void insertBenchMark1() {
        long start = System.currentTimeMillis();
        StringBuffer suffix = new StringBuffer();
        long row = 1;
        for (int j = 0; j < 1000; j++) {
            for (int i = 0; i < 10000; i++) {
                String uuid = UUID.randomUUID().toString();
                String name = uuid.substring(0, 4);
                int sex = -1;
                if(Math.random() < 0.51) {
                    sex = 1;
                }else {
                    sex = 0;
                }
                String phone = (String) RandomValue.getAddress().get("tel");
                suffix.append("(" + row + ",'" + name + "'," + sex + ",'" + phone + "','" + uuid + "'),");
                row++;
            }
            boolean b = userDao.insertMore1(suffix.substring(0, suffix.length()-1),j);
            if(!b) {
                System.out.println("出错了----");
                System.exit(0);
            }else {
                // 清空上一次添加的数据
                suffix = new StringBuffer();
            }
        }
        long end = System.currentTimeMillis();
        System.out.println("生成1000万条数据共花费"+(end-start)+"毫秒");
    }

public boolean insertMore1(String sql_suffix,long flag) {
        String sql_prefix = "insert into tuser(id,name,sex,phone,password) values ";
        return affectRowMore1(sql_prefix + sql_suffix,flag);
    }

总结:

方法一和方法二很类同,唯一不同的是方法一采用的是“insert into tb (...) values (...);insert into tb (...) values (...);...”的方式执行插入操作,方法二则是“insert into tb (...) values(...),(...)...;”的方式。

通过测试的对比,方法二比方法一快了近5倍。

到此这篇关于mysql中批量插入数据(1万、10万、100万、1000万、1亿级别)的文章就介绍到这了,更多相关mysql 批量插入数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • MySQL8设置自动创建时间和自动更新时间的实现方法

    MySQL8设置自动创建时间和自动更新时间的实现方法

    在实际应用中,我们时常会需要用到创建时间和更新时间这两个字段,下面这篇文章主要给大家介绍了关于MySQL8设置自动创建时间和自动更新时间的实现方法,需要的朋友可以参考下
    2023-03-03
  • MySQL数据库表的合并及分区方式

    MySQL数据库表的合并及分区方式

    这篇文章主要介绍了MySQL数据库表的合并及分区方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • MySQL Memory 存储引擎浅析

    MySQL Memory 存储引擎浅析

    需求源自项目中的MemCache需求,开始想用MemCached(官方站点:http://memcached.org/ ),但这个在Linux下面应用广泛的开源软件无官方支持的Windows版本
    2011-12-12
  • 理解MySQL查询优化处理过程

    理解MySQL查询优化处理过程

    MySQL查询优化需要经过解析、预处理和优化三个步骤。在这些过程中,都有可能发生错误。本篇文章不会深入讨论错误处理,而是帮助理解 MySQL 执行查询的方式,以便可以写出更好的查询语句。
    2021-05-05
  • MySQL实现树状所有子节点查询的方法

    MySQL实现树状所有子节点查询的方法

    这篇文章主要介绍了MySQL实现树状所有子节点查询的方法,涉及mysql节点查询、存储过程调用等操作技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2016-06-06
  • 用MySQL函数清除字符串首尾空白字符的方法

    用MySQL函数清除字符串首尾空白字符的方法

    由于内容插入的时候没办法进行完全的过滤,所以审核这里就经常出问题,搞的头大,而MySQL的trim函数没办法去掉回车和换行,只能去掉多余的空格
    2011-03-03
  • MySQL存储路径迁移的详细步骤

    MySQL存储路径迁移的详细步骤

    在构建Web应用程序时,MySQL是存储数据的核心工具,在云服务器上,正确设置MySQL的存储路径对应用性能至关重要,通过迁移,我们不仅解决了空间不足的问题,还能让数据库运行得更快,所以本文将给大家介绍MySQL存储路径迁移的详细步骤,需要的朋友可以参考下
    2024-06-06
  • 深入理解MySQL中MVCC与BufferPool缓存机制

    深入理解MySQL中MVCC与BufferPool缓存机制

    这篇文章主要介绍了深入理解MySQL中MVCC与BufferPool缓存机制,MySQL默认RR隔离级别就是通过该机制来保证的MVCC,更多主题相关内容,需要的可以参考下面文章内容介绍
    2022-05-05
  • MySQ登录提示ERROR 1045 (28000)错误的解决方法

    MySQ登录提示ERROR 1045 (28000)错误的解决方法

    这篇文章主要为大家详细介绍了MySQ登录提示ERROR 1045 (28000)错误的解决方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-07-07
  • Mysql 日期时间 DATE_FORMAT(date,format)

    Mysql 日期时间 DATE_FORMAT(date,format)

    Mysql 日期时间 DATE_FORMAT(date,format) ,需要的朋友可以参考下。
    2010-12-12

最新评论