hadoop map-reduce中的文件并发操作

 更新时间:2014年04月26日 12:24:38   作者:  
hadoop mapreduce最主要的应用是基于键值对的数据的运算,过滤,提取。但除此之外,我们可以顺带利用mapreduce高并发的特性做一些用常用方法难以处理的问题,比如大量数据,大量文件的并发读写

这样的操作在map端或者reduce端均可。下面以一个实际业务场景中的例子来简要说明。

问题简要描述:

假如reduce输入的key是Text(String),value是BytesWritable(byte[]),不同key的种类为100万个,value的大小平均为30k左右,每个key大概对应 100个value,要求对每一个key建立两个文件,一个用来不断添加value中的二进制数据,一个用来记录各个value在文件中的位置索引。(大量的小文件会影响HDFS的性能,所以最好对这些小文件进行拼接)

当文件数量较小时,可以考虑使用MultipleOutput来进行key-value的分流,可以按照key的不同,将其输出到不同的文件或者目录中。但是reduce的数量只能为1,不然每个reduce都会生成相同的目录或者文件,不能达到最终的目的。此外最重要的是,操作系统对每个进程打开的文件数量的限制,默认为1024,集群的各个datanode可能会配置更高的值,但最多在几万左右,仍然是一个限制因素。不能满足百万文件的需求。

reduce的主要目的是用来归并key-value并输出到HDFS上,我们当然也可以在reduce中进行其他的操作,比如文件读写。因为默认的partitioner保证同一个key的数据肯定会在同一个reduce中,所以在每个reduce中只用打开两个文件进行读写即可(一个索引文件,一个数据文件)。并发度由reduce数量决定,将reduce数量设为256,那我们就可以同时处理256个key的数据(partioner保证了不同reduce处理的key不同,不会引起文件读写冲突)。这样的并发度的效率是很客观的,可以在较短的时间内完成需求。

思路是这样,但同时由于hdfs的特性以及hadoop的任务调度,在文件读写过程中,仍有可能会出现很多问题,下面简要说些一些常见的会碰到的问题。

1.org.apache.hadoop.hdfs.protocol.AlreadyBeingCreatedException异常

这可能是最经常碰到的一个问题。可能的原因如下:

(1)文件流冲突。

一般创建文件时都会打开一个供写入的文件流。而我们希望是追加,所以如果使用了错误的API ,就有可能引起上述问题。以FileSystem类为例,如果使用create()方法之后再调用append()方法,就会抛出上述异常。所以最好使用createNewFile方法,只创建文件,不打开流。

(2)mapreduce推测执行机制

mapreduce 为了提高效率,会在一个任务启动之后,同时启动一些相同的任务(attempt),其中有一个attempt成功完成之后,视为整个task完成,其结果 作为最终结果,并且杀掉那些较慢的attempt。集群一般会开启此选项以优化性能(以空间换时间)。但在本问题环境下推测执行却不太合适。因为我们一般希望一个task 用来处理一个文件,但如果启动推测执行,会有几个attempt同时试图操作同一个文件,就会引发异常。所以最好关掉此选项,将 mapred.reduce.max.attempts 设为1,或者将mapred.reduce.tasks.speculative.execution设为false.

但此时仍有可能会出现问题。因为如果一个task的唯一attempt出现问题,在被kill掉之后,task仍会另起一个attempt,此时因为前一个attempt异常终止,仍有可能会影响到新起的attempt的文件操作,引发异常。所以最安全的方法是,借鉴推测执行的机制(每个attempt各自生成自己的结果,最终选择一个作为最终结果),以每个attempt的id号为后缀附加到所操作的文件上,同时捕获所有文件操作的异常并处理,这样可避免文件的读写冲突。Context可以用来获取运行时的一些上下文信息,可以很容易得到attempt的id号。注意,此时如果开启推测执行也可以,但是会生成很多相同的文件(每个attempt一份),仍然不是最好的解决方法。

同时,我们可以利用reduce的输出来记录运行“不正常的” key.这些task大多数是attempt_0被杀掉而重启了一个attempt_1,所以下面的文件一般为两份。可以对这些情况的key输出(文件异常或者attemptID > 0),并进行一些后续处理,比如文件重命名,或者紧对这些key重新写入。因为此种情况的key一般只占极少数,所以并不影响总体的效率。

2.文件异常处理

最好能将mapreduce中的所有文件操作都设置好异常处理。不然一个文件异常就有可能会使整个job失败。所以从效率来讲,最好是在文件发生异常时将其key作为reduce的输出以进行记录。因为同时mapreduce会重启一个task attempts重新进行文件读写,可保证我们得到最终的数据,最后所需的只是对那些异常的key进行一些简单的文件重命名操作即可。

3.多目录以及文件拼接

如果我们将key的种类设为1000万,上述方法会生成太多的小文件从而影响hdfs的性能,另外,因为所有文件都在同一个目录下,会导致同一个目录下文件数目过多而影响访问效率。

在创建文件的同时建立多个子目录,一个有用的方法是以reduce的taskid来建立子目录。这样有多少个reduce就可以建立多少个子目录,不会有文件冲突。同一个reduce处理的key都会在同一个目录下。

文件拼接要考虑的一个索引的问题。为了将文件索引建立的尽量简单,应该尽量保证同一个key的所有数据都在同一个大文件中。这可以利用key的hashCode来实现。如果我们想在每个目录下建立1000个文件,只需将hashCode对1000取余即可。

相关文章

  • hive数据仓库新增字段方法

    hive数据仓库新增字段方法

    这篇文章主要为大家介绍了hive中新增字段的方法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • 详解关于Dbeaver的常用操作

    详解关于Dbeaver的常用操作

    这篇文章主要介绍了详解关于Dbeaver的常用操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • SQL知识点之列转行Unpivot函数

    SQL知识点之列转行Unpivot函数

    这篇文章主要给大家介绍了关于SQL知识点之列转行Unpivot函数的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用SQL具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-09-09
  • 浅谈为什么数据库字段建议设置为NOT NULL

    浅谈为什么数据库字段建议设置为NOT NULL

    本文主要介绍了MySQL数据库中将字段设置为NOT NULL的性能和优缺点,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-12-12
  • SQL注入之基于布尔的盲注详解

    SQL注入之基于布尔的盲注详解

    首先说明的盲注是注入的一种,指的是在不知道数据库返回值的情况下对数据中的内容进行猜测,实施SQL注入。盲注一般分为布尔盲注和基于时间的盲注。这篇文章主要讲解的是基于布尔的盲注。下面来一起看看吧。
    2016-09-09
  • SQL注入的实现以及防范示例详解

    SQL注入的实现以及防范示例详解

    SQL注入是比较常见的网络攻击方式之一,它不是利用操作系统的BUG来实现攻击,而是针对程序员编写时的疏忽,这篇文章主要给大家介绍了关于SQL注入的实现以及防范的相关资料,需要的朋友可以参考下
    2021-06-06
  • 如何自己动手写SQL执行引擎

    如何自己动手写SQL执行引擎

    本文主要介绍了如何自己动手写SQL执行引擎,感兴趣的同学,可以参考下。
    2021-06-06
  • 达梦数据库如何设置自增主键的方法及注意事项

    达梦数据库如何设置自增主键的方法及注意事项

    这篇文章主要介绍了达梦数据库如何设置自增主键的方法及注意事项的相关资料,在达梦数据库中实现自增字段通常需要使用序列(sequence)和触发器(trigger),需要的朋友可以参考下
    2024-09-09
  • SQLite 创建数据库实例操作

    SQLite 创建数据库实例操作

    这篇文章主要介绍了SQLite 创建数据库实例操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧
    2024-05-05
  • 如何解决Navicat已经成功连接,密码忘记的问题

    如何解决Navicat已经成功连接,密码忘记的问题

    这篇文章主要介绍了如何解决Navicat已经成功连接,密码忘记的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-07-07

最新评论