MySQL优化之对RAND()的优化方法

 更新时间:2014年07月22日 09:52:10   投稿:junjie  
这篇文章主要介绍了MySQL优化之对RAND()的优化方法,本文详细分析了Mysql中对RAND()的几种优化方法,并最终得出一个结论,需要的朋友可以参考下

众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。

首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:

复制代码 代码如下:

[yejr@imysql]> show create table t_innodb_random\G
*************************** 1. row ***************************
Table: t_innodb_random
Create Table: CREATE TABLE `t_innodb_random` (
`id` int(10) unsigned NOT NULL,
`user` varchar(64) NOT NULL DEFAULT '',
KEY `idx_id` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。
复制代码 代码如下:

[yejr@imysql]> select count(*) from t_innodb_random\G
*************************** 1. row ***************************
count(*): 393216

1、常量等值检索:

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random where id = 13412\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: ref
possible_keys: idx_id
key: idx_id
key_len: 4
ref: const
rows: 1
Extra: Using index

[yejr@imysql]> select id from t_innodb_random where id = 13412;
1 row in set (0.00 sec)

可以看到执行计划很不错,是常量等值查询,速度非常快。

2、使用RAND()函数乘以常量,求得随机数后检索:

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index

[yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)\G
Empty set (0.26 sec)

可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。

我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 2
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G
Empty set (0.27 sec)

可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。

3、改造成普通子查询模式 ,这里有两次子查询

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G
Empty set (0.27 sec)


可以看到,执行计划也不好,执行耗时较慢。

4、改造成JOIN关联查询,不过最大值还是用常量表示

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: system
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1
Extra:
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: ref
possible_keys: idx_id
key: idx_id
key_len: 4
ref: const
rows: 1
Extra: Using where; Using index
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: No tables used

[yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G
Empty set (0.00 sec)


这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。

这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G
*************************** 1. row ***************************
id: 1301
1 row in set (0.00 sec)

可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。

小结:

从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。

5、再来看看用ORDRR BY RAND()方式一次取得多个随机值的方式:

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using index; Using temporary; Using filesort

[yejr@imysql]> select id from t_innodb_random order by rand() limit 1000;
1000 rows in set (0.41 sec)


全索引扫描,生成排序临时表,太差太慢了。

6、把随机数放在子查询里看看:

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G
1000 rows in set (0.04 sec)


嗯,提速了不少,这个看起来还不赖:)

7、仿照上面的方法,改成JOIN和随机数子查询关联

复制代码 代码如下:

[yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: system
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1
Extra:
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: range
possible_keys: idx_id
key: idx_id
key_len: 4
ref: NULL
rows: 196672
Extra: Using where; Using index
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: No tables used
*************************** 4. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G
1000 rows in set (0.00 sec)


可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。

综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。
上面说了那么多的废话,最后简单说下,就是把下面这个SQL:

复制代码 代码如下:

SELECT id FROM table ORDER BY RAND() LIMIT n;

改造成下面这个:
复制代码 代码如下:

SELECT id FROM table t1 JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;

就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。

相关文章

  • Linux下MySQL5.7.18 yum方式从卸载到安装过程图解

    Linux下MySQL5.7.18 yum方式从卸载到安装过程图解

    这篇文章主要介绍了Linux下MySQL5.7.18 yum方式从卸载到安装过程图解,需要的朋友可以参考下
    2017-06-06
  • MySQL数据库char与varchar的区别分析及使用建议

    MySQL数据库char与varchar的区别分析及使用建议

    本文主要介绍了mysql中VARCHAR与CHAR字符型数据的差异以及这两种字符型数据在项目中的使用建议,真心不错。值得一看。小编有种受益匪浅的感觉。
    2014-09-09
  • 并发环境下mysql插入检查方案

    并发环境下mysql插入检查方案

    这篇文章主要介绍了并发环境下mysql插入检查方案的相关资料,需要的朋友可以参考下
    2016-03-03
  • MySQL性能优化配置参数之thread_cache和table_cache详解

    MySQL性能优化配置参数之thread_cache和table_cache详解

    这篇文章主要介绍了MySQL性能优化配置参数之thread_cache和table_cache详解,THREAD_CACHE是Mysql的连接池,table_cache指定表高速缓存的大小,需要的朋友可以参考下
    2014-07-07
  • MySQL 索引和数据表该如何维护

    MySQL 索引和数据表该如何维护

    使用合适的数据类型完成数据表创建和建立索引后,工作并没有完结——你需要去维护数据表和索引以保证它们运行良好。数据表维护的主要目的是查找和修复冲突,维护精确的索引统计和减少碎片。
    2021-05-05
  • mysql 获取规定时间段内的统计数据

    mysql 获取规定时间段内的统计数据

    这篇文章主要介绍了mysql 获取规定时间段内的统计数据的相关资料,需要的朋友可以参考下
    2017-05-05
  • 详解Mysql之mysqlbackup备份与恢复实践

    详解Mysql之mysqlbackup备份与恢复实践

    这篇文章主要介绍了详解Mysql之mysqlbackup备份与恢复实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • MySQL 数据库铁律(小结)

    MySQL 数据库铁律(小结)

    这篇文章主要介绍了MySQL 数据库铁律,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • 导致MySQL做全表扫描的几种情况

    导致MySQL做全表扫描的几种情况

    这篇文章主要介绍了导致MySQL做全表扫描的几种情况,帮助大家更好的理解和学习使用MySQL,感兴趣的朋友可以了解下
    2021-03-03
  • Mysql中key和index的区别点整理

    Mysql中key和index的区别点整理

    在本篇文章里小编给大家整理的是关于Mysql中key和index的区别点整理,需要的朋友们可以学习下。
    2020-03-03

最新评论