在PostgreSQL的基础上创建一个MongoDB的副本的教程

 更新时间:2015年04月21日 15:10:11   投稿:goldensun  
这篇文章主要介绍了在PostgreSQL的基础上创建一个MongoDB的副本的教程,使在使用NoSQL的同时又能用到PostgreSQL中的东西,需要的朋友可以参考下

我有一个偷懒的想法。这个好点子该如何开始呢?好吧,这是一个恰如其分的小疯狂:为什么不直接在Postgres的基础上建立我们自己的MongoDB版本呢?这听起来有点牵强附会,但却简单而实在。

当NoSQL运动风生水起的时候,Postgres社区没有干坐着摆弄他们的大拇指。他们持续开发,贯穿整个Postgres的生态系统,几个突出的功能吸引了我的眼球:整合JSON支持和PLV8。PLV8把V8 Javascript引擎引入到Postgres,他让Javascript成为一个第一类别的语言(first-class language)。拥有JSON类型让它能更容易地处理JSON(这很有效)。

开始前需要做的准备:

  •     Postgres 9.2+ (as of this blog entry, 9.2 is in beta) - http://www.postgresql.org/ftp/source/
  •     V8 - https://github.com/v8/v8
  •     PLV8 - http://code.google.com/p/plv8js/wiki/PLV8

 MongoDB的最低级别是集合.  集合可以用表来表示:
 

  CREATE TABLE some_collection (
   some_collection_id SERIAL NOT NULL PRIMARY KEY,
   data JSON
  );

字符型的JSON 被保存在 Postgres 表里,简单易行 (现在看是这样).

下面实现自动创建集合.  保存在集合表里:
 

  CREATE TABLE collection (
   collection_id SERIAL NOT NULL PRIMARY KEY,
   name VARCHAR
  );
 
  -- make sure the name is unique
  CREATE UNIQUE INDEX idx_collection_constraint ON collection (name);

一旦表建好了,就可以通过存储过程自动创建集合.  方法就是先建表,然后插入建表序列.
 
  

 CREATE OR REPLACE FUNCTION create_collection(collection varchar) RETURNS
  boolean AS $$
   var plan1 = plv8.prepare('INSERT INTO collection (name) VALUES ($1)', [ 'varchar' ]);
   var plan2 = plv8.prepare('CREATE TABLE col_' + collection +
    ' (col_' + collection + '_id INT NOT NULL PRIMARY KEY, data JSON)');
   var plan3 = plv8.prepare('CREATE SEQUENCE seq_col_' + collection);
   
   var ret;
   
   try {
    plv8.subtransaction(function () {
     plan1.execute([ collection ]);
     plan2.execute([ ]);
     plan3.execute([ ]);
    
     ret = true;
    });
   } catch (err) {
    ret = false;
   }
   
   plan1.free();
   plan2.free();
   plan3.free();
   
   return ret;
  $$ LANGUAGE plv8 IMMUTABLE STRICT;

有了存储过程,就方便多了:
 
  

 SELECT create_collection('my_collection');


解决了集合存储的问题,下面看看MongoDB数据解析.  MongoDB 通过点式注解方法操作完成这一动作:
 

  CREATE OR REPLACE FUNCTION find_in_obj(data json, key varchar) RETURNS
  VARCHAR AS $$
   var obj = JSON.parse(data);
   var parts = key.split('.');
   
   var part = parts.shift();
   while (part && (obj = obj[part]) !== undefined) {
    part = parts.shift();
   }
   
   // this will either be the value, or undefined
   return obj;
  $$ LANGUAGE plv8 STRICT;

上述功能返回VARCHAR,并不适用所有情形,但对于字符串的比较很有用:
 

  SELECT data
   FROM col_my_collection
   WHERE find_in_obj(data, 'some.element') = 'something cool'

除了字符串的比较, MongoDB还提供了数字类型的比较并提供关键字exists .  下面是find_in_obj() 方法的不同实现:
 

  CREATE OR REPLACE FUNCTION find_in_obj_int(data json, key varchar) RETURNS
  INT AS $$
   var obj = JSON.parse(data);
   var parts = key.split('.');
   
   var part = parts.shift();
   while (part && (obj = obj[part]) !== undefined) {
    part = parts.shift();
   }
   
   return Number(obj);
  $$ LANGUAGE plv8 STRICT;
   
  CREATE OR REPLACE FUNCTION find_in_obj_exists(data json, key varchar) RETURNS
  BOOLEAN AS $$
   var obj = JSON.parse(data);
   var parts = key.split('.');
   
   var part = parts.shift();
   while (part && (obj = obj[part]) !== undefined) {
    part = parts.shift();
   }
   
   return (obj === undefined ? 'f' : 't');
  $$ LANGUAGE plv8 STRICT;

接下来是数据查询.  通过现有的材料来实现 find() 方法.
保存数据到集合中很简单。首先,我们需要检查JSON对象并寻找一个_id值。这部分代码是原生的假设,如果_id已存在这意味着一个更新,否则就意味着一个插入。请注意,我们目前还没有创建objectID,只使用了一个序列待其发生:
 

  CREATE OR REPLACE FUNCTION save(collection varchar, data json) RETURNS
  BOOLEAN AS $$
   var obj = JSON.parse(data);
 
   var id = obj._id;
 
   // if there is no id, naively assume an insert
   if (id === undefined) {
    // get the next value from the sequence for the ID
    var seq = plv8.prepare("SELECT nextval('seq_col_" +
      collection + "') AS id");
    var rows = seq.execute([ ]);
    
    id = rows[0].id;
    obj._id = id;
 
    seq.free();
   
    var insert = plv8.prepare("INSERT INTO col_" + collection +
      " (col_" + collection + "_id, data) VALUES ($1, $2)",
      [ 'int', 'json']);
 
    insert.execute([ id, JSON.stringify(obj) ]);
    insert.free();
   } else {
    var update = plv8.prepare("UPDATE col_" + collection +
     " SET data = $1 WHERE col_" + collection + "_id = $2",
     [ 'json', 'int' ]);
 
    update.execute([ data, id ]);
   }
 
   return true;
  $$ LANGUAGE plv8 IMMUTABLE STRICT;

基于这个观点,我们可以构建一些插入的简单文档:

  {
   "name": "Jane Doe",
   "address": {
    "street": "123 Fake Street",
    "city": "Portland",
    "state": "OR"
   },
   "age": 33
  }
   
  {
   "name": "Sarah Smith",
   "address": {
    "street": "456 Real Ave",
    "city": "Seattle",
    "state": "WA"
   }
  }
   
  {
   "name": "James Jones",
   "address": {
    "street": "789 Infinity Way",
    "city": "Oakland",
    "state": "CA"
   },
   "age": 23
  }

让我们创建一个集合并插入一些数据:

 

  work=# SELECT create_collection('data');
   create_collection
  -------------------
   t
  (1 row)
   
  work=# SELECT save('data', '{ our object }');
   save
  ------
   t
  (1 row)

你可以通过检查“col_data”表的内容来查看对象。

其它翻译版本(1)

现在我们已经有了一些数据,让我们再查询一下。假设我们想查找住在俄勒冈或华盛顿州年龄大于30的所有人,使用一个MongoDB风格的find():
 

  {
   "$or": [
    {
     "address.state": "OR"
    },
    {
     "address.state": "WA"
    }
   ],
   "age": {
    "$gt": 30
   }
  }

因为上次我们已经创建了一些深度的包检测,现在就很容易创建查询并返回Jane Doe:
 

  SELECT data
   FROM col_data
   WHERE find_in_obj_int(data, 'age') > 30
    AND (
       find_in_obj(data, 'address.state') = 'OR'
      OR
       find_in_obj(data, 'address.state') = 'WA'
      )

我采用了写一个递归调用函数来建立WHERE子句的方法。它有点长,所以我没有把它贴在这里而是放在GitHub上。一旦find()存储过程被创建,我们就可以在查询中使用它。我们应该能够看到Jane Doe被返回:

  work=# SELECT find('data', '{ "$or": [ { "address.state": "OR" }, { "address.state": "WA" } ], "age": { "$gt": 30 } }');

这样奏效:它不优雅,但它奏效。这是一个概念的证明,而且几乎没有像它一样好的可能。我之前曾被问过为什么不使用HSTORE。虽然你可以存储嵌套的HSTORE和数组值,但它仍不是JSON,并且不容易通过PLV8操作。这将需要一个从HSTORE到JSON的序列器,这个序列器在任何时间将请求的返回序列化成MongoDB接受的数据形式,但依旧太容易在JavaScript中处理。这是次优选择,毕竟我们是要在Postgres的基础上创建一个MongoDB的副本。

源码可以在GitHub上找到:fork并尝试一下吧,记得回馈哦。

相关文章

  • 图文详解HTTP头中的SQL注入

    图文详解HTTP头中的SQL注入

    HTTP头字段是超文本传输协议(HTTP)中请求和响应的部分信息,它们定义了HTTP传输的操作参数,下面这篇文章主要给大家介绍了关于HTTP头中SQL注入的相关资料,需要的朋友可以参考下
    2021-12-12
  • 站内群发消息三种不同用户量的数据库设计

    站内群发消息三种不同用户量的数据库设计

    很多SNS网站和一部分CMS网站都广泛地应用了站内信这一模块,这个看似简单的东西其实背后隐藏着很多需要设计师重视的设计细节,要做好这个“邮递员”是很不容易的,本文讲述站内群发消息三种不同用户量的数据库设计,逐渐设计一个百万级用户量的站内信群发数据库
    2023-12-12
  • Beekeeper Studio开源数据库管理工具比Navicat更炫酷

    Beekeeper Studio开源数据库管理工具比Navicat更炫酷

    这篇文章主要为大家介绍了一款界面更炫酷的开源数据库管理工具Beekeeper Studio比Navicat更好用,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • 使用Navicat连接opengauss数据库完整步骤(详细图文)

    使用Navicat连接opengauss数据库完整步骤(详细图文)

    Navicat是一套快速、可靠并价格相当便宜的数据库管理工具,专为简化数据库的管理及降低系统管理成本而设,下面这篇文章主要给大家介绍了关于使用Navicat连接opengauss数据库的完整步骤,需要的朋友可以参考下
    2024-02-02
  • SQL注入篇学习之盲注/宽字节注入

    SQL注入篇学习之盲注/宽字节注入

    盲注是注入的一种,指的是在不知道数据库返回值的情况下对数据中的内容进行猜测,实施SQL注入,下面这篇文章主要给大家介绍了关于SQL注入篇之盲注/宽字节注入的相关资料,需要的朋友可以参考下
    2022-03-03
  • SQL语句实现删除重复记录并只保留一条

    SQL语句实现删除重复记录并只保留一条

    这篇文章主要介绍了SQL语句实现删除重复记录并只保留一条,本文直接给出实现代码,并给出多种查询重复记录的方法,需要的朋友可以参考下
    2015-06-06
  • 执行Insert Exec时的隐藏开销 分析

    执行Insert Exec时的隐藏开销 分析

    Insert Exec时的隐藏开销,大家可以参考下。
    2009-07-07
  • 远程数据库的表超过20个索引的影响详细解析

    远程数据库的表超过20个索引的影响详细解析

    这篇文章主要介绍了远程数据库的表超过20个索引的影响详细解析,具有一定参考价值,需要的朋友可以了解下。
    2017-10-10
  • 最新统计排名前十的SQL和NoSQL数据库排行榜

    最新统计排名前十的SQL和NoSQL数据库排行榜

    这篇文章主要介绍了最新统计排名前十的SQL和NoSQL数据库排行榜,本文包括Oracle、MySQL、Microsoft SQL Server、PostgreSQL、MongoDB等数据库,需要的朋友可以参考下
    2014-09-09
  • 问哭自己lsm 索引原理深入剖析

    问哭自己lsm 索引原理深入剖析

    这篇文章主要为大家介绍了问哭自己lsm 索引原理及剖析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-04-04

最新评论