python生成tensorflow输入输出的图像格式的方法

 更新时间:2018年02月12日 09:14:43   作者:何雷  
本篇文章主要介绍了python生成tensorflow输入输出的图像格式的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow;也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取。下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出。

import cv2 
import numpy as np 
import h5py 
 
height = 460 
width = 345 
 
with h5py.File('make3d_dataset_f460.mat','r') as f: 
  images = f['images'][:] 
   
image_num = len(images) 
 
data = np.zeros((image_num, height, width, 3), np.uint8) 
data = images.transpose((0,3,2,1)) 

先生成图像文件的路径:ls *.jpg> list.txt

import cv2 
import numpy as np 
 
image_path = './' 
list_file = 'list.txt' 
height = 48 
width = 48 
 
image_name_list = [] # read image 
with open(image_path + list_file) as fid: 
  image_name_list = [x.strip() for x in fid.readlines()] 
image_num = len(image_name_list) 
 
data = np.zeros((image_num, height, width, 3), np.uint8) 
 
for idx in range(image_num): 
  img = cv2.imread(image_name_list[idx]) 
  img = cv2.resize(img, (height, width)) 
  data[idx, :, :, :] = img 

2 Tensorflow自带函数读取

def get_image(image_path): 
  """Reads the jpg image from image_path. 
  Returns the image as a tf.float32 tensor 
  Args: 
    image_path: tf.string tensor 
  Reuturn: 
    the decoded jpeg image casted to float32 
  """ 
  return tf.image.convert_image_dtype( 
    tf.image.decode_jpeg( 
      tf.read_file(image_path), channels=3), 
    dtype=tf.uint8) 

pipeline读取方法

# Example on how to use the tensorflow input pipelines. The explanation can be found here ischlag.github.io. 
import tensorflow as tf 
import random 
from tensorflow.python.framework import ops 
from tensorflow.python.framework import dtypes 
 
dataset_path   = "/path/to/your/dataset/mnist/" 
test_labels_file = "test-labels.csv" 
train_labels_file = "train-labels.csv" 
 
test_set_size = 5 
 
IMAGE_HEIGHT = 28 
IMAGE_WIDTH  = 28 
NUM_CHANNELS = 3 
BATCH_SIZE  = 5 
 
def encode_label(label): 
 return int(label) 
 
def read_label_file(file): 
 f = open(file, "r") 
 filepaths = [] 
 labels = [] 
 for line in f: 
  filepath, label = line.split(",") 
  filepaths.append(filepath) 
  labels.append(encode_label(label)) 
 return filepaths, labels 
 
# reading labels and file path 
train_filepaths, train_labels = read_label_file(dataset_path + train_labels_file) 
test_filepaths, test_labels = read_label_file(dataset_path + test_labels_file) 
 
# transform relative path into full path 
train_filepaths = [ dataset_path + fp for fp in train_filepaths] 
test_filepaths = [ dataset_path + fp for fp in test_filepaths] 
 
# for this example we will create or own test partition 
all_filepaths = train_filepaths + test_filepaths 
all_labels = train_labels + test_labels 
 
all_filepaths = all_filepaths[:20] 
all_labels = all_labels[:20] 
 
# convert string into tensors 
all_images = ops.convert_to_tensor(all_filepaths, dtype=dtypes.string) 
all_labels = ops.convert_to_tensor(all_labels, dtype=dtypes.int32) 
 
# create a partition vector 
partitions = [0] * len(all_filepaths) 
partitions[:test_set_size] = [1] * test_set_size 
random.shuffle(partitions) 
 
# partition our data into a test and train set according to our partition vector 
train_images, test_images = tf.dynamic_partition(all_images, partitions, 2) 
train_labels, test_labels = tf.dynamic_partition(all_labels, partitions, 2) 
 
# create input queues 
train_input_queue = tf.train.slice_input_producer( 
                  [train_images, train_labels], 
                  shuffle=False) 
test_input_queue = tf.train.slice_input_producer( 
                  [test_images, test_labels], 
                  shuffle=False) 
 
# process path and string tensor into an image and a label 
file_content = tf.read_file(train_input_queue[0]) 
train_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) 
train_label = train_input_queue[1] 
 
file_content = tf.read_file(test_input_queue[0]) 
test_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) 
test_label = test_input_queue[1] 
 
# define tensor shape 
train_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS]) 
test_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS]) 
 
 
# collect batches of images before processing 
train_image_batch, train_label_batch = tf.train.batch( 
                  [train_image, train_label], 
                  batch_size=BATCH_SIZE 
                  #,num_threads=1 
                  ) 
test_image_batch, test_label_batch = tf.train.batch( 
                  [test_image, test_label], 
                  batch_size=BATCH_SIZE 
                  #,num_threads=1 
                  ) 
 
print "input pipeline ready" 
 
with tf.Session() as sess: 
  
 # initialize the variables 
 sess.run(tf.initialize_all_variables()) 
  
 # initialize the queue threads to start to shovel data 
 coord = tf.train.Coordinator() 
 threads = tf.train.start_queue_runners(coord=coord) 
 
 print "from the train set:" 
 for i in range(20): 
  print sess.run(train_label_batch) 
 
 print "from the test set:" 
 for i in range(10): 
  print sess.run(test_label_batch) 
 
 # stop our queue threads and properly close the session 
 coord.request_stop() 
 coord.join(threads) 
 sess.close() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python多进程实现进程间通信实例

    python多进程实现进程间通信实例

    这篇文章主要介绍了python多进程实现进程间通信实例,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • Python模拟实现全功能贷款计算器

    Python模拟实现全功能贷款计算器

    在个人理财中,贷款计算器是一款非常实用的工具,本文将教你如何使用Python编写一个全功能的贷款计算器,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-12-12
  • 修改 CentOS 6.x 上默认Python的方法

    修改 CentOS 6.x 上默认Python的方法

    这篇文章主要介绍了修改 CentOS 6.x 上默认Python的方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • Django ORM 查询表中某列字段值的方法

    Django ORM 查询表中某列字段值的方法

    这篇文章主要介绍了Django ORM 查询表中某列字段值的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • Python爬虫防封ip的一些技巧

    Python爬虫防封ip的一些技巧

    这篇文章主要介绍了Python爬虫防封ip的一些技巧,对平时学习爬虫有所帮助,感兴趣的朋友可以了解下
    2020-08-08
  • Matplotlib 3D 绘制小红花原理

    Matplotlib 3D 绘制小红花原理

    这篇文章主要介绍了Matplotlib 3D 绘制小红花原理,小编上一篇文章一家介绍了绘制小红化,本篇博文主要介绍一下3D小红花的绘制原理,看过上篇博文的朋友可以参考一下
    2022-02-02
  • pygame 键盘事件的实践

    pygame 键盘事件的实践

    本文主要介绍了pygame 键盘事件,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • Python3 中作为一等对象的函数解析

    Python3 中作为一等对象的函数解析

    这篇文章主要介绍了Python3 中作为一等对象的函数,本文通过实例代码讲解的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • Python设计模式之工厂方法模式实例详解

    Python设计模式之工厂方法模式实例详解

    这篇文章主要介绍了Python设计模式之工厂方法模式,结合实例形式较为详细的分析了工厂方法模式的概念、原理、用法及相关操作技巧,需要的朋友可以参考下
    2019-01-01
  • Python直接赋值、浅拷贝与深度拷贝实例分析

    Python直接赋值、浅拷贝与深度拷贝实例分析

    这篇文章主要介绍了Python直接赋值、浅拷贝与深度拷贝,结合实例形式分析了Python直接赋值、浅拷贝与深度拷贝的概念、原理、用法及相关操作注意事项,需要的朋友可以参考下
    2019-06-06

最新评论