python opencv之SIFT算法示例

 更新时间:2018年02月24日 09:17:57   作者:@fei   我要评论

这篇文章主要介绍了python opencv之SIFT算法示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

本文介绍了python opencv之SIFT算法示例,分享给大家,具体如下:

目标:

学习SIFT算法的概念
学习在图像中查找SIFT关键的和描述符

原理:

(原理部分自己找了不少文章,内容中有不少自己理解和整理的东西,为了方便快速理解内容和能够快速理解原理,本文尽量不使用数学公式,仅仅使用文字来描述。本文中有很多引用别人文章的内容,仅供个人记录使用,若有错误,请指正出来,万分感谢)

之前的harris算法和Shi-Tomasi 算法,由于算法原理所致,具有旋转不变性,在目标图片发生旋转时依然能够获得相同的角点。但是如果对图像进行缩放以后,再使用之前的算法就会检测不出来,原理用一张图表示(图1):

这里写图片描述

(harris算法和shi-tomasi算法都是基于窗口中像素分布和变化的原理,在图像放大且窗口大小不发生变化的时,窗口中的像素信息则会有很大的不同,造成无法检测的结果)

SIFT特性:

  1. 独特性,也就是特征点可分辨性高,类似指纹,适合在海量数据中匹配。
  2. 多量性,提供的特征多。
  3. 高速性,就是速度快。
  4. 可扩展,能与其他特征向量联合使用。

SIFT特点:

  1. 旋转、缩放、平移不变性
  2. 解决图像仿射变换,投影变换的关键的匹配
  3. 光照影响小
  4. 目标遮挡影响小
  5. 噪声景物影响小

SIFT算法步骤:

  1. 尺度空间极值检测
  2. 关键点定位
  3. 关键点方向参数
  4. 关键点描述符
  5. 关键点匹配

尺度空间极值检测:

尺度空间的个人理解:
你找一张分辨率1024×1024图片,在电脑上观看,十分清晰,但是图片太大。现在把这图片反正photoshop上,将分辨率改成512×512,图片看着依然很清晰,但是不可能像1024×1024的画面那么精细,只不过是因为人眼构造的原因,512×512图片依然能让你分辨出这是个什么东西。

粗俗点说,尺度空间,就相当于一个图片需要获得多少分辨率的量级。如果把一个图片从原始分辨率到,不停的对其分辨率进行减少,然后将这些图片摞在一起,可以看成一个四棱锥的样式,这个东西就叫做图像金字塔(如下图,图2)。

这里写图片描述

再回到尺度空间,在摄像头中,计算机无法分辨一个景物的尺度信息。而人眼不同,除了人大脑里已经对物体有了基本的概念(例如正常人在十几米外看到苹果,和在近距离看到苹果,都能认出是苹果)以外,人眼在距离物体近时,能够获得物体足够多的特性,在距离物体远时,能够或略细节,例如,近距离看一个人脸能看到毛孔,距离远了看不到毛孔等等。

在图片信息当中,分辨率都是固定的,要想得到类似人眼的效果,就要把图片弄成不同的分辨率,制作成图像金字塔来模拟人眼的功能,从而在其他图片中进行特征识别时,能够像人眼睛一样,即使要识别的物体尺寸变大或者变小,也能够识别出来!

从图1可以看出,如果如果图像变大,窗口大小还是以前的大小,则无法正确检测出角点。那么很自然的就能想到,如果图片变大,咱们把窗口也放大不就行了? 这就需要上面提到的尺度空间发挥作用。

在SIFT当中,利用了一个叫做高斯核的方程来构建尺度空间,原因是高斯核函数是唯一多尺度空间的核。听起来比较晦涩,个人理解为:

高斯核函数在之前的高斯滤波当中使用过,其原理就是利用高斯分布的特性,在以某一个点为中心要进行以某一个窗口大小进行模糊的操作。那么,根据滤波的原理,距离中心像素点位置的距离越远的像素点,需要“模糊化效果”的值就应该越少。那么这个距离值的分配方法,就是利用满足高斯核函数的分配方法,由中心,到四周,符合高斯核函数的“钟型”曲线(从二维上看)。

那么尺度空间中的高斯核也可以这么理解,高斯核函数的参数有三个G(x,y,σ) ,在滤波当中,第三个参数σ在运算中是固定的一个值。而在尺度空间的构造当中,所谓的“尺度”,就是这个σ值变化,而x和y表示像素坐标。σ的值越小,图像被平滑(被模糊)的越少,尺度也越小。所以,大尺度图片可以对应成一个图像离远处观看,是个大致轮廓,小尺度图片可以对应成离近处观看,有更多细节。

构建尺度空间的目的是为了检测出在不同的尺度下都存在的特征点,如此可以获得缩放不变性

其中利用图像I(x,y)G(x,y,σ) 进行卷积运算,得到尺度空间L(x,y,σ),可以理解,所谓的“尺度空间”在这里就是这个函数L(x,y,σ)

如果求取特征点,可以使用一个叫做拉普拉斯算子进行运算

但是,由于拉普拉斯算子的效率太低,再SIFT算法当中使用差分来代替。

高斯金字塔:

在建立尺度空间后,需要找到关键点,此时需要实现高斯金字塔的构造来实现关键点的求取。在高斯金字塔当中,“塔”的每一层都是图像,“塔”的高度就是上面提到的尺度σ。“塔”的每一层对应一个σ值,同时将高斯金字塔中的图像分成组,每组当中图像的尺寸相同,但是尺度σ不同。具体尺度之间的计算关系,先忽略,如下图所示:

这里写图片描述

高斯差分金字塔DOG:

每一组相邻当中相邻两层的图像做差,得到的图像再“叠”成一个金字塔就是高斯差分金字塔DOG。

DOG局部特征点检测:

有了差分金字塔,现在便可以计算关键点(特征点)。由于金字塔的模型不是二维模型,而是一个三维模型,这里计算极值的方法也不再是二维求取极值的方法。

计算一个某一个点是否是局部最大值,在离散的三维空间当中,以该点为中心,检测它周围的点。类似魔方的中心位置一样,如下图中的“叉”就是待计算是否是局部极值点。

这里写图片描述

这里说明,局部极值点都是在同一个组当中进行的,所以肯定有这样的问题,某一组当中的第一个图和最后一个图层没有前一张图和下一张图,那该怎么计算? 解决办法是,在用高斯模糊,在高斯金字塔多“模糊”出三张来凑数,所以在DOG中多出两张。

关键点定位:

上面找到的关键点要进行处理,去除一些不好的特征点,保存下来的特征点能够满足稳定性等条件。

主要是去掉DOG局部曲率非常不对称的像素。

因为低对比度的特征点和边界点对光照和噪声变化非常敏感,所以要去掉。利用阈值的方法来限制,在opencv中为contrastThreshold。

去除低对比度的特征点:

使用泰勒公式对DOG函数空间进行拟合,去掉小于修正阈值的关键点。

去除不稳定的边界点:

利用Hessian矩阵(就是求导数的矩阵),利用边缘梯度的方向上主曲率值比较大,而沿着边缘方向则主曲率值较小的原理,将主曲率限制为某个值。满足该值条件的点留下,反之去除。

关键点设定方向参数:

每个关键点设置方向以后可以获得旋转不变性。

获取关键点所在尺度空间的邻域,然后计算该区域的梯度和方向,根据计算得到的结果创建方向直方图,直方图的峰值为主方向的参数,其他高于主方向百分之80的方向被判定为辅助方向,这样设定对稳定性有很大帮助。如图

这里写图片描述

关键点描述符:

经过上面的步骤计算,每个关键点有三个信息,位置、尺度、方向。所以具备平移、缩放、和旋转不变性。

接下来对每个关键点用一组向量将这个关键点描述出来,使其不随着光照、视角等等影响而改变。该描述符不但涉及关键点,而且还涉及到关键点周围的像素,使其有更强的不变特性。

基本原理是选取关键点周围16×16的像素区域,分成4个小块,每个小块创建8个bin的直方图,这总共的128个信息的向量就是关键点描述符的主要内容。此外还要测量,以达到光照、旋转的稳定性。如图

这里写图片描述

关键点匹配:

分别对模板图和实时图建立关键点描述符集合,通过对比关键点描述符来判断两个关键点是否相同。128个信息的向量使用欧氏距离来实现。

在关键点的匹配当中,使用的搜索算法为区域搜索算法当中最常用的k-d树实现。

比较之后,需要在进行消除错配点才算完成。

OpenCV 中的 SIFT:

关于opencv版本与SIFT算法不能调用的问题:

SIFT算法是一个有专利的算法,在商业用途上是收费的。对于穷B学生,算法的发明者还比较仁慈,可以使用。
不过,在python当中使用SIFT算法和版本之间有不少关系,源文档当中使用opencv版本是2.4.9版本,此版本可以随意使用SIFT算法。

但是,在opencv3当中就没那么幸运了,opencv中的很多特征点提取算法都和cv2中的库分离开,必须要添加opencv-contrib才可以使用,本人使用的opencv版本是3.3.0,几乎是最新的版本。

网上有一大堆教程关于如何在opencv当中如何添加opencv-contrib的教程,使用cmake,使用vs,啥的非常麻烦。

本人狗急跳墙,寻思在pip上面有没有啥第三方的库可以直接就将opencv-contrib这个库。

结果,还真找到了 哈哈。

这下方便了,只要在你的控制台当中输入
pip install opencv-contrib-python即可

如果pip安装不上去

直接上官方上面下个轮子,然后pip安装就能用了

网站在此!!!

import cv2
import numpy as np


img = cv2.imread('1.jpg')
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()


kp = sift.detect(gray,None)#找到关键点

img=cv2.drawKeypoints(gray,kp,img)#绘制关键点

cv2.imshow('sp',img)
cv2.waitKey(0)

返回的关键点是一个带有很多不用属性的特殊结构体,属性当中有坐标,方向、角度等等。

计算关键点描述符:

使用sift.compute()函数来进行计算关键点描述符

kp,des = sift.compute(gray,kp)

如果未找到关键点,可使用函数sift.detectAndCompute()直接找到关键点并计算。

在第二个函数中,kp为关键点列表,des为numpy的数组,为关键点数目×128

sift = cv2.xfeatures2d.SIFT_create()

kp, des = sift.detectAndCompute(gray,None)

结果如图

这里写图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

最新评论