PyTorch快速搭建神经网络及其保存提取方法详解

 更新时间:2018年04月28日 10:39:45   作者:marsjhao  
本篇文章主要介绍了PyTorch快速搭建神经网络及其保存提取方法详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解

一、PyTorch快速搭建神经网络方法

先看实验代码:

import torch 
import torch.nn.functional as F 
 
# 方法1,通过定义一个Net类来建立神经网络 
class Net(torch.nn.Module): 
  def __init__(self, n_feature, n_hidden, n_output): 
    super(Net, self).__init__() 
    self.hidden = torch.nn.Linear(n_feature, n_hidden) 
    self.predict = torch.nn.Linear(n_hidden, n_output) 
 
  def forward(self, x): 
    x = F.relu(self.hidden(x)) 
    x = self.predict(x) 
    return x 
 
net1 = Net(2, 10, 2) 
print('方法1:\n', net1) 
 
# 方法2 通过torch.nn.Sequential快速建立神经网络结构 
net2 = torch.nn.Sequential( 
  torch.nn.Linear(2, 10), 
  torch.nn.ReLU(), 
  torch.nn.Linear(10, 2), 
  ) 
print('方法2:\n', net2) 
# 经验证,两种方法构建的神经网络功能相同,结构细节稍有不同 
 
''''' 
方法1: 
 Net ( 
 (hidden): Linear (2 -> 10) 
 (predict): Linear (10 -> 2) 
) 
方法2: 
 Sequential ( 
 (0): Linear (2 -> 10) 
 (1): ReLU () 
 (2): Linear (10 -> 2) 
) 
''' 

先前学习了通过定义一个Net类来构建神经网络的方法,classNet中首先通过super函数继承torch.nn.Module模块的构造方法,再通过添加属性的方式搭建神经网络各层的结构信息,在forward方法中完善神经网络各层之间的连接信息,然后再通过定义Net类对象的方式完成对神经网络结构的构建。

构建神经网络的另一个方法,也可以说是快速构建方法,就是通过torch.nn.Sequential,直接完成对神经网络的建立。

两种方法构建得到的神经网络结构完全相同,都可以通过print函数来打印输出网络信息,不过打印结果会有些许不同。

二、PyTorch的神经网络保存和提取

在学习和研究深度学习的时候,当我们通过一定时间的训练,得到了一个比较好的模型的时候,我们当然希望将这个模型及模型参数保存下来,以备后用,所以神经网络的保存和模型参数提取重载是很有必要的。

首先,我们需要在需要保存网路结构及其模型参数的神经网络的定义、训练部分之后通过torch.save()实现对网络结构和模型参数的保存。有两种保存方式:一是保存年整个神经网络的的结构信息和模型参数信息,save的对象是网络net;二是只保存神经网络的训练模型参数,save的对象是net.state_dict(),保存结果都以.pkl文件形式存储。

对应上面两种保存方式,重载方式也有两种。对应第一种完整网络结构信息,重载的时候通过torch.load(‘.pkl')直接初始化新的神经网络对象即可。对应第二种只保存模型参数信息,需要首先搭建相同的神经网络结构,通过net.load_state_dict(torch.load('.pkl'))完成模型参数的重载。在网络比较大的时候,第一种方法会花费较多的时间。

代码实现:

import torch 
from torch.autograd import Variable 
import matplotlib.pyplot as plt 
 
torch.manual_seed(1) # 设定随机数种子 
 
# 创建数据 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) 
y = x.pow(2) + 0.2*torch.rand(x.size()) 
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False) 
 
# 将待保存的神经网络定义在一个函数中 
def save(): 
  # 神经网络结构 
  net1 = torch.nn.Sequential( 
    torch.nn.Linear(1, 10), 
    torch.nn.ReLU(), 
    torch.nn.Linear(10, 1), 
    ) 
  optimizer = torch.optim.SGD(net1.parameters(), lr=0.5) 
  loss_function = torch.nn.MSELoss() 
 
  # 训练部分 
  for i in range(300): 
    prediction = net1(x) 
    loss = loss_function(prediction, y) 
    optimizer.zero_grad() 
    loss.backward() 
    optimizer.step() 
 
  # 绘图部分 
  plt.figure(1, figsize=(10, 3)) 
  plt.subplot(131) 
  plt.title('net1') 
  plt.scatter(x.data.numpy(), y.data.numpy()) 
  plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) 
 
  # 保存神经网络 
  torch.save(net1, '7-net.pkl')           # 保存整个神经网络的结构和模型参数 
  torch.save(net1.state_dict(), '7-net_params.pkl') # 只保存神经网络的模型参数 
 
# 载入整个神经网络的结构及其模型参数 
def reload_net(): 
  net2 = torch.load('7-net.pkl') 
  prediction = net2(x) 
 
  plt.subplot(132) 
  plt.title('net2') 
  plt.scatter(x.data.numpy(), y.data.numpy()) 
  plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) 
 
# 只载入神经网络的模型参数,神经网络的结构需要与保存的神经网络相同的结构 
def reload_params(): 
  # 首先搭建相同的神经网络结构 
  net3 = torch.nn.Sequential( 
    torch.nn.Linear(1, 10), 
    torch.nn.ReLU(), 
    torch.nn.Linear(10, 1), 
    ) 
 
  # 载入神经网络的模型参数 
  net3.load_state_dict(torch.load('7-net_params.pkl')) 
  prediction = net3(x) 
 
  plt.subplot(133) 
  plt.title('net3') 
  plt.scatter(x.data.numpy(), y.data.numpy()) 
  plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) 
 
# 运行测试 
save() 
reload_net() 
reload_params() 

实验结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python 自动刷新网页的两种方法

    python 自动刷新网页的两种方法

    这篇文章主要介绍了python 自动刷新网页的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python实现批量获取指定文件夹下的所有文件的厂商信息

    python实现批量获取指定文件夹下的所有文件的厂商信息

    这篇文章主要介绍了python实现批量获取指定文件夹下的所有文件的厂商信息的方法,是非常实用的技巧,涉及到文件的读写与字典的操作等技巧,需要的朋友可以参考下
    2014-09-09
  • Python操作mongodb的9个步骤

    Python操作mongodb的9个步骤

    本篇文章给大家详细分享了Python操作mongodb的详细步骤以及实例代码,有需要的朋友参考学习下吧。
    2018-06-06
  • Django数据映射(一对一,一对多,多对多)

    Django数据映射(一对一,一对多,多对多)

    本文主要介绍了Django数据映射(一对一,一对多,多对多),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • python3基于TCP实现CS架构文件传输

    python3基于TCP实现CS架构文件传输

    这篇文章主要为大家详细介绍了python3基于TCP实现CS架构文件传输,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-07-07
  • Python实现115网盘自动下载的方法

    Python实现115网盘自动下载的方法

    这篇文章主要介绍了Python实现115网盘自动下载的方法,可实现自动调用115客户端进行下载的功能,非常实用,需要的朋友可以参考下
    2014-09-09
  • 在Python文件中指定Python解释器的方法

    在Python文件中指定Python解释器的方法

    今天小编就为大家分享一篇在Python文件中指定Python解释器的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • Python类中使用cursor.execute()时语法错误的解决方法

    Python类中使用cursor.execute()时语法错误的解决方法

    在 Python 类中使用 cursor.execute() 时,出现语法错误(如 SyntaxError 或 SQL 语法相关错误)通常是因为 SQL 语句格式不正确、占位符使用不当,或参数传递方式不符合预期,以下是解决此类问题的常见方法和建议,需要的朋友可以参考下
    2024-09-09
  • 理解生产者消费者模型及在Python编程中的运用实例

    理解生产者消费者模型及在Python编程中的运用实例

    生产者消费者模型一般用于体现程序的多线程并发性,Python的多线程虽然受到GIL控制,但依然可以构建队列来简单体现出模型的思路,这里我们就来共同理解生产者消费者模型及在Python编程中的运用实例:
    2016-06-06
  • Python字符串处理实现单词反转

    Python字符串处理实现单词反转

    这篇文章主要为大家详细介绍了Python字符串处理实现单词反转的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-06-06

最新评论