tensorflow 获取变量&打印权值的实例讲解

 更新时间:2018年06月14日 09:11:12   作者:cassiePython  
今天小编就为大家分享一篇tensorflow 获取变量&打印权值的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性来获取,但是当我们利用一些第三方的库来构造神经网络的layer时,存在一种情况:就是我们自己无法定义该层的变量,因为是自动进行定义的。

比如用tensorflow的slim库时:

<span style="font-size:14px;">def resnet_stack(images, output_shape, hparams, scope=None):</span>
<span style="font-size:14px;"> """Create a resnet style transfer block.</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> Args:</span>
<span style="font-size:14px;"> images: [batch-size, height, width, channels] image tensor to feed as input</span>
<span style="font-size:14px;"> output_shape: output image shape in form [height, width, channels]</span>
<span style="font-size:14px;"> hparams: hparams objects</span>
<span style="font-size:14px;"> scope: Variable scope</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> Returns:</span>
<span style="font-size:14px;"> Images after processing with resnet blocks.</span>
<span style="font-size:14px;"> """</span>
<span style="font-size:14px;"> end_points = {}</span>
<span style="font-size:14px;"> if hparams.noise_channel:</span>
<span style="font-size:14px;"> # separate the noise for visualization</span>
<span style="font-size:14px;"> end_points['noise'] = images[:, :, :, -1]</span>
<span style="font-size:14px;"> assert images.shape.as_list()[1:3] == output_shape[0:2]</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> with tf.variable_scope(scope, 'resnet_style_transfer', [images]):</span>
<span style="font-size:14px;"> with slim.arg_scope(</span>
<span style="font-size:14px;">  [slim.conv2d],</span>
<span style="font-size:14px;">  normalizer_fn=slim.batch_norm,</span>
<span style="font-size:14px;">  kernel_size=[hparams.generator_kernel_size] * 2,</span>
<span style="font-size:14px;">  stride=1):</span>
<span style="font-size:14px;">  net = slim.conv2d(</span>
<span style="font-size:14px;">   images,</span>
<span style="font-size:14px;">   hparams.resnet_filters,</span>
<span style="font-size:14px;">   normalizer_fn=None,</span>
<span style="font-size:14px;">   activation_fn=tf.nn.relu)</span>
<span style="font-size:14px;">  for block in range(hparams.resnet_blocks):</span>
<span style="font-size:14px;">  net = resnet_block(net, hparams)</span>
<span style="font-size:14px;">  end_points['resnet_block_{}'.format(block)] = net</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">  net = slim.conv2d(</span>
<span style="font-size:14px;">   net,</span>
<span style="font-size:14px;">   output_shape[-1],</span>
<span style="font-size:14px;">   kernel_size=[1, 1],</span>
<span style="font-size:14px;">   normalizer_fn=None,</span>
<span style="font-size:14px;">   activation_fn=tf.nn.tanh,</span>
<span style="font-size:14px;">   scope='conv_out')</span>
<span style="font-size:14px;">  end_points['transferred_images'] = net</span>
<span style="font-size:14px;"> return net, end_points</span>

我们希望获取第一个卷积层的权重weight,该怎么办呢??

在训练时,这些可训练的变量会被tensorflow保存在 tf.trainable_variables() 中,于是我们就可以通过打印 tf.trainable_variables() 来获取该卷积层的名称(或者你也可以自己根据scope来看出来该变量的name ),然后利用tf.get_default_grap().get_tensor_by_name 来获取该变量。

举个简单的例子:

<span style="font-size:14px;">import tensorflow as tf</span>
<span style="font-size:14px;">with tf.variable_scope("generate"):</span>
<span style="font-size:14px;"> with tf.variable_scope("resnet_stack"):</span>
<span style="font-size:14px;">  #简单起见,这里没有用第三方库来说明,</span>
<span style="font-size:14px;">  bias = tf.Variable(0.0,name="bias")</span>
<span style="font-size:14px;">  weight = tf.Variable(0.0,name="weight")</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">for tv in tf.trainable_variables():</span>
<span style="font-size:14px;"> print (tv.name)</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">b = tf.get_default_graph().get_tensor_by_name("generate/resnet_stack/bias:0")</span>
<span style="font-size:14px;">w = tf.get_default_graph().get_tensor_by_name("generate/resnet_stack/weight:0")</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">with tf.Session() as sess:</span>
<span style="font-size:14px;"> tf.global_variables_initializer().run()</span>
<span style="font-size:14px;"> print(sess.run(b))</span>
<span style="font-size:14px;"> print(sess.run(w))
</span>

结果如下:

以上这篇tensorflow 获取变量&打印权值的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python中偏函数用法示例

    Python中偏函数用法示例

    这篇文章主要介绍了Python中偏函数用法,结合实例形式分析了Python基于functools模块创建和使用偏函数的相关操作技巧与注意事项,需要的朋友可以参考下
    2018-06-06
  • Jupyter加载文件的实现方法

    Jupyter加载文件的实现方法

    这篇文章主要介绍了Jupyter加载文件的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • ubuntu 20.04系统下如何切换gcc/g++/python的版本

    ubuntu 20.04系统下如何切换gcc/g++/python的版本

    这篇文章主要给大家介绍了关于ubuntu 20.04系统下如何切换gcc/g++/python版本的相关资料,文中通过代码介绍的非常详细,对大家学习或者使用ubuntu具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-12-12
  • 如何遍历python中的对象属性

    如何遍历python中的对象属性

    这篇文章主要介绍了如何遍历python中的对象属性问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • python中的元组与列表及元组的更改

    python中的元组与列表及元组的更改

    这篇文章主要介绍了python中的元组与列表及元组的更改,元组是由一对方括号构成的序列。列表创建后,可以根据自己的需要改变他的内容,下面更多详细内容,需要的小伙伴可以参考一下
    2022-03-03
  • Celery批量异步调用任务一直等待结果问题

    Celery批量异步调用任务一直等待结果问题

    这篇文章主要介绍了Celery批量异步调用任务一直等待结果问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • Python读写二进制文件的示例详解

    Python读写二进制文件的示例详解

    在Python编程中,我们经常需要处理各种类型的文件,其中包括二进制文件,本文将详细介绍如何使用Python读写二进制文件,并提供一些实际应用的示例,希望对大家有所帮助
    2024-01-01
  • Win10+GPU版Pytorch1.1安装的安装步骤

    Win10+GPU版Pytorch1.1安装的安装步骤

    这篇文章主要介绍了Win10+GPU版Pytorch1.1安装的安装步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • python下函数参数的传递(参数带星号的说明)

    python下函数参数的传递(参数带星号的说明)

    python中函数参数的传递是通过赋值来传递的。
    2010-09-09
  • python re正则匹配网页中图片url地址的方法

    python re正则匹配网页中图片url地址的方法

    今天小编就为大家分享一篇python re正则匹配网页中图片url地址的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12

最新评论