pandas 数据归一化以及行删除例程的方法
更新时间:2018年11月10日 10:46:05 作者:夜月xl
今天小编就为大家分享一篇pandas 数据归一化以及行删除例程的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
如下所示:
#coding:utf8
import pandas as pd
import numpy as np
from pandas import Series,DataFrame
# 如果有id列,则需先删除id列再进行对应操作,最后再补上
# 统计的时候不需要用到id列,删除的时候需要考虑
# delete row
def row_del(df, num_percent, label_len = 0):
#print list(df.count(axis=1))
col_num = len(list(list(df.values)[1])) - label_len # -1为考虑带标签
if col_num<0:
print 'Error'
#print int(col_num*num_percent)
return df.dropna(axis=0, how='any', thresh=int(col_num*num_percent))
# 如果有字符串类型,则报错
# data normalization -1 to 1
# label_col: 不需考虑的类标,可以为字符串或字符串列表
# 数值类型统一到float64
def data_normalization(df, label_col = []):
lab_len = len(label_col)
print label_col
if lab_len>0:
df_temp = df.drop(label_col, axis = 1)
df_lab = df[label_col]
print df_lab
else:
df_temp = df
max_val = list(df_temp.max(axis=0))
min_val = list(df_temp.min(axis=0))
mean_val = list((df_temp.max(axis=0) + df_temp.min(axis=0)) / 2)
nan_values = df_temp.isnull().values
row_num = len(list(df_temp.values))
col_num = len(list(df_temp.values)[1])
for rn in range(row_num):
#data_values_r = list(data_values[rn])
nan_values_r = list(nan_values[rn])
for cn in range(col_num):
if nan_values_r[cn] == False:
df_temp.values[rn][cn] = 2 * (df_temp.values[rn][cn] - mean_val[cn])/(max_val[cn] - min_val[cn])
else:
print 'Wrong'
for index,lab in enumerate(label_col):
df_temp.insert(index, lab, df_lab[lab])
return df_temp
# 创建一个带有缺失值的数据框:
df = pd.DataFrame(np.random.randn(5,3), index=list('abcde'), columns=['one','two','three'])
df.ix[1,:-1]=np.nan
df.ix[1:-1,2]=np.nan
df.ix[0,0]=int(1)
df.ix[2,2]='abc'
# 查看一下数据内容:
print '\ndf1'
print df
print row_del(df, 0.8)
print '-------------------------'
df = data_normalization(df, ['two', 'three'])
print df
print df.dtypes
print (type(df.ix[2,2]))
以上这篇pandas 数据归一化以及行删除例程的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
浅谈Python 命令行参数argparse写入图片路径操作
这篇文章主要介绍了浅谈Python 命令行参数argparse写入图片路径操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-07-07
PyInstaller打包selenium-wire过程中常见问题和解决指南
常用的打包工具 PyInstaller 能将 Python 项目打包成单个可执行文件,但也会因为兼容性问题和路径管理而出现各种运行错误,本指南总结了打包过程中常见问题和解决方案,大家可以根据需要进行选择2025-04-04
Django框架文件上传与自定义图片上传路径、上传文件名操作分析
这篇文章主要介绍了Django框架文件上传与自定义图片上传路径、上传文件名操作,结合实例形式分析了Django框架文件上传的原理、步骤、实现方法以及图片上传时自定义上传路径、上传文件名的相关操作技巧,需要的朋友可以参考下2019-05-05


最新评论