Python-ElasticSearch搜索查询的讲解

 更新时间:2019年02月25日 17:01:57   作者:奔跑的豆子_  
今天小编就为大家分享一篇关于Python-ElasticSearch搜索查询的讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧

Elasticsearch 是一个开源的搜索引擎,建立在一个全文搜索引擎库 Apache Lucene™ 基础之上。 Lucene 可能是目前存在的,不论开源还是私有的,拥有最先进,高性能和全功能搜索引擎功能的库。但是 Lucene 仅仅只是一个库。为了利用它,你需要编写 Java 程序,并在你的 java 程序里面直接集成 Lucene 包。 更坏的情况是,你需要对信息检索有一定程度的理解才能明白 Lucene 是怎么工作的。Lucene 是 很 复杂的。

在上一篇文章中介绍了ElasticSearch的简单使用,接下来记录一下ElasticSearch的查询:

查询所有数据

# 搜索所有数据
es.search(index="my_index",doc_type="test_type")
# 或者
body = {
  "query":{
    "match_all":{}
  }
}
es.search(index="my_index",doc_type="test_type",body=body)

term与terms

# term
body = {
  "query":{
    "term":{
      "name":"python"
    }
  }
}
# 查询name="python"的所有数据
es.search(index="my_index",doc_type="test_type",body=body)
# terms
body = {
  "query":{
    "terms":{
      "name":[
        "python","android"
      ]
    }
  }
}
# 搜索出name="python"或name="android"的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

match与multi_match

# match:匹配name包含python关键字的数据
body = {
  "query":{
    "match":{
      "name":"python"
    }
  }
}
# 查询name包含python关键字的数据
es.search(index="my_index",doc_type="test_type",body=body)
# multi_match:在name和addr里匹配包含深圳关键字的数据
body = {
  "query":{
    "multi_match":{
      "query":"深圳",
      "fields":["name","addr"]
    }
  }
}
# 查询name和addr包含"深圳"关键字的数据
es.search(index="my_index",doc_type="test_type",body=body)

ids

body = {
  "query":{
    "ids":{
      "type":"test_type",
      "values":[
        "1","2"
      ]
    }
  }
}
# 搜索出id为1或2d的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

复合查询bool

bool有3类查询关系,must(都满足),should(其中一个满足),must_not(都不满足)

body = {
  "query":{
    "bool":{
      "must":[
        {
          "term":{
            "name":"python"
          }
        },
        {
          "term":{
            "age":18
          }
        }
      ]
    }
  }
}
# 获取name="python"并且age=18的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

切片式查询

body = {
  "query":{
    "match_all":{}
  }
  "from":2  # 从第二条数据开始
  "size":4  # 获取4条数据
}
# 从第2条数据开始,获取4条数据
es.search(index="my_index",doc_type="test_type",body=body)

范围查询

body = {
  "query":{
    "range":{
      "age":{
        "gte":18,    # >=18
        "lte":30    # <=30
      }
    }
  }
}
# 查询18<=age<=30的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

前缀查询

body = {
  "query":{
    "prefix":{
      "name":"p"
    }
  }
}
# 查询前缀为"赵"的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

通配符查询

body = {
  "query":{
    "wildcard":{
      "name":"*id"
    }
  }
}
# 查询name以id为后缀的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

排序

body = {
  "query":{
    "match_all":{}
  }
  "sort":{
    "age":{         # 根据age字段升序排序
      "order":"asc"    # asc升序,desc降序
    }
  }
}

filter_path

响应过滤

# 只需要获取_id数据,多个条件用逗号隔开
es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._id"])
# 获取所有数据
es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._*"])

count

执行查询并获取该查询的匹配数

# 获取数据量
es.count(index="my_index",doc_type="test_type")

度量类聚合

  • 获取最小值
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "min_age":{         # 最小值的key
      "min":{         # 最小
        "field":"age"    # 查询"age"的最小值
      }
    }
  }
}
# 搜索所有数据,并获取age最小的值
es.search(index="my_index",doc_type="test_type",body=body)
  • 获取最大值
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "max_age":{         # 最大值的key
      "max":{         # 最大
        "field":"age"    # 查询"age"的最大值
      }
    }
  }
}
# 搜索所有数据,并获取age最大的值
es.search(index="my_index",doc_type="test_type",body=body)
  • 获取和
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "sum_age":{         # 和的key
      "sum":{         # 和
        "field":"age"    # 获取所有age的和
      }
    }
  }
}
# 搜索所有数据,并获取所有age的和
es.search(index="my_index",doc_type="test_type",body=body)
  • 获取平均值
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "avg_age":{         # 平均值的key
      "sum":{         # 平均值
        "field":"age"    # 获取所有age的平均值
      }
    }
  }
}
# 搜索所有数据,获取所有age的平均值
es.search(index="my_index",doc_type="test_type",body=body)

更多的搜索用法:

https://elasticsearch-py.readthedocs.io/en/master/api.html

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

  • 深入理解Django的信号机制

    深入理解Django的信号机制

    本文主要介绍了深入理解Django的信号机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • django ORM之values和annotate使用详解

    django ORM之values和annotate使用详解

    这篇文章主要介绍了django ORM之values和annotate使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Python实现删除list列表重复元素的方法总结

    Python实现删除list列表重复元素的方法总结

    在Python编程中,我们经常需要处理列表中的重复元素,这篇文章为大家介绍了五种高效的方法来删除列表中的重复元素,希望对大家有所帮助
    2023-07-07
  • 使用python+pandas读写xlsx格式中的数据

    使用python+pandas读写xlsx格式中的数据

    这篇文章主要介绍了使用python+pandas读写xlsx格式中的数据,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下
    2022-08-08
  • python实现简单中文词频统计示例

    python实现简单中文词频统计示例

    本篇文章主要介绍了python实现简单中文词频统计示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • Python数据类型--字典dictionary

    Python数据类型--字典dictionary

    这篇文章主要介绍了Python数据类型字典dictionary,字典是另一种可变容器模型,且可存储任意类型对象。下面详细内容需要的小伙伴可以参考一下,希望对你有所帮助
    2022-02-02
  • Python中使用ipython的详细教程

    Python中使用ipython的详细教程

    ipython是一个非常流行的python解释器,比python解释器好用很多,本文重点给大家介绍Python中使用ipython的详细教程,需要的朋友参考下吧
    2021-06-06
  • python 定时器,实现每天凌晨3点执行的方法

    python 定时器,实现每天凌晨3点执行的方法

    今天小编就为大家分享一篇python 定时器,实现每天凌晨3点执行的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • Django 配置多站点多域名的实现步骤

    Django 配置多站点多域名的实现步骤

    这篇文章主要介绍了Django 配置多站点多域名的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • PyTorch中torch.nn.functional.cosine_similarity使用详解

    PyTorch中torch.nn.functional.cosine_similarity使用详解

    在pytorch中可以使用torch.cosine_similarity函数对两个向量或者张量计算余弦相似度,这篇文章主要给大家介绍了关于PyTorch中torch.nn.functional.cosine_similarity使用的相关资料,需要的朋友可以参考下
    2022-03-03

最新评论