pandas 数据索引与选取的实现方法

 更新时间:2019年06月21日 11:20:14   作者:罗兵   我要评论

这篇文章主要介绍了pandas 数据索引与选取的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。

其对应使用的方法如下:
一. 行,列 --> df[]
二. 区域   --> df.loc[], df.iloc[], df.ix[]
三. 单元格 --> df.at[], df.iat[]

下面开始练习:

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), columns=list('ABCD'))

1. df[]:

一维
行维度:
    整数切片、标签切片、<布尔数组>
列维度:
    标签索引、标签列表、Callable

df[:3]
df['a':'c']
df[[True,True,True,False,False,False]] # 前三行(布尔数组长度等于行数)
df[df['A']>0] # A列值大于0的行
df[(df['A']>0) | (df['B']>0)] # A列值大于0,或者B列大于0的行
df[(df['A']>0) & (df['C']>0)] # A列值大于0,并且C列大于0的行

df['A']
df[['A','B']]
df[lambda df: df.columns[0]] # Callable

2. df.loc[]

二维,先行后列
行维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable
列维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable

df.loc['a', :]
df.loc['a':'d', :]
df.loc[['a','b','c'], :]
df.loc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.loc[df['A']>0, :]
df.loc[df.loc[:,'A']>0, :]
df.loc[df.iloc[:,0]>0, :]
df.loc[lambda _df: _df.A > 0, :]
df.loc[:, 'A']
df.loc[:, 'A':'C']
df.loc[:, ['A','B','C']]
df.loc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.loc[:, df.loc['a']>0]     # a行大于0的列
df.loc[:, df.iloc[0]>0]      # 0行大于0的列
df.loc[:, lambda _df: ['A', 'B']]
df.A.loc[lambda s: s > 0]

3. df.iloc[]

二维,先行后列
行维度:
    整数索引、整数切片、整数列表、<布尔数组>
列维度:
    整数索引、整数切片、整数列表、<布尔数组>、Callable

df.iloc[3, :]
df.iloc[:3, :]
df.iloc[[0,2,4], :]
df.iloc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.iloc[df['A']>0, :]    #× 为什么不行呢?想不通!
df.iloc[df.loc[:,'A']>0, :] #×
df.iloc[df.iloc[:,0]>0, :] #×
df.iloc[lambda _df: [0, 1], :]
df.iloc[:, 1]
df.iloc[:, 0:3]
df.iloc[:, [0,1,2]]
df.iloc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.iloc[:, df.loc['a']>0] #×
df.iloc[:, df.iloc[0]>0] #×
df.iloc[:, lambda _df: [0, 1]]

4. df.ix[]

二维,先行后列
行维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable
列维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable

df.ix[0, :]
df.ix[0:3, :]
df.ix[[0,1,2], :]

df.ix['a', :]
df.ix['a':'d', :]
df.ix[['a','b','c'], :]
df.ix[:, 0]
df.ix[:, 0:3]
df.ix[:, [0,1,2]]

df.ix[:, 'A']
df.ix[:, 'A':'C']
df.ix[:, ['A','B','C']]

5. df.at[]

精确定位单元格
行维度:
    标签索引
列维度:
    标签索引

df.at['a', 'A']

6. df.iat[]

精确定位单元格

行维度:
    整数索引
列维度:
    整数索引

df.iat[0, 0]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python模拟登陆,用session维持回话的实例

    python模拟登陆,用session维持回话的实例

    今天小编就为大家分享一篇python模拟登陆,用session维持回话的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 在scrapy中使用phantomJS实现异步爬取的方法

    在scrapy中使用phantomJS实现异步爬取的方法

    今天小编就为大家分享一篇在scrapy中使用phantomJS实现异步爬取的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • python最长回文串算法

    python最长回文串算法

    这篇文章主要为大家详细介绍了python最长回文串算法的实践,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • Python分割指定页数的pdf文件方法

    Python分割指定页数的pdf文件方法

    今天小编就为大家分享一篇Python分割指定页数的pdf文件方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • python用plt画图时,cmp设置方法

    python用plt画图时,cmp设置方法

    今天小编就为大家分享一篇python用plt画图时,cmp设置方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • python 输入一个数n,求n个数求乘或求和的实例

    python 输入一个数n,求n个数求乘或求和的实例

    今天小编就为大家分享一篇python 输入一个数n,求n个数求乘或求和的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • 目前最全的python的就业方向

    目前最全的python的就业方向

    Python是一门面向对象的编程语言,编译速度超快,从诞生到现在已经25个年头了。其特点在于灵活运用,因为其拥有大量第三方库,所以开发人员不必重复造轮子,就像搭积木一样,只要擅于利用这些库就可以完成绝大部分工作
    2018-06-06
  • Python使用time模块实现指定时间触发器示例

    Python使用time模块实现指定时间触发器示例

    这篇文章主要介绍了Python使用time模块实现指定时间触发器,结合实例形式分析了Python时间相关模块与方法使用技巧,需要的朋友可以参考下
    2017-05-05
  • python多线程操作实例

    python多线程操作实例

    这篇文章主要介绍了python多线程操作实例,本文先是讲解了python多线程的相关知识、python多线程使用的两种方法等内容,需要的朋友可以参考下
    2014-11-11
  • python中日期和时间格式化输出的方法小结

    python中日期和时间格式化输出的方法小结

    这篇文章主要介绍了python中日期和时间格式化输出的方法,实例总结了Python常见的日期与事件操作技巧,非常具有实用价值,需要的朋友可以参考下
    2015-03-03

最新评论