Pandas之Dropna滤除缺失数据的实现方法

 更新时间:2019年06月25日 11:55:31   作者:yungeisme  
这篇文章主要介绍了Pandas之Dropna滤除缺失数据的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2
0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3
0 1.0 2.0 3.0 NaN
1 NaN NaN 2.0 NaN
2 NaN NaN NaN NaN
3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 解决jupyter (python3) 读取文件遇到的问题

    解决jupyter (python3) 读取文件遇到的问题

    这篇文章主要介绍了解决jupyter (python3) 读取文件遇到的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • python绘制堆叠条形图介绍

    python绘制堆叠条形图介绍

    大家好,本篇文章主要讲的是python绘制堆叠条形图介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2021-12-12
  • 解决Jupyter 文件路径的问题

    解决Jupyter 文件路径的问题

    这篇文章主要介绍了解决Jupyter 文件路径的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python实现打印http请求信息

    Python实现打印http请求信息

    这篇文章主要介绍了Python实现打印http请求信息方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • Django rest framework jwt的使用方法详解

    Django rest framework jwt的使用方法详解

    这篇文章主要介绍了Django rest framework jwt的使用方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 利用numpy+matplotlib绘图的基本操作教程

    利用numpy+matplotlib绘图的基本操作教程

    这篇文章主要给大家介绍了利用numpy+matplotlib绘图的基本操作,文中介绍的非常详细,对大家学习matplotlib绘图具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧。
    2017-05-05
  • python中有帮助函数吗

    python中有帮助函数吗

    在本篇文章里小编给大家分享的是一篇关于python帮助函数详解内容,有兴趣的朋友们可以学习下。
    2020-06-06
  • Python 通过截图匹配原图中的位置(opencv)实例

    Python 通过截图匹配原图中的位置(opencv)实例

    今天小编就为大家分享一篇Python 通过截图匹配原图中的位置(opencv)实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Django ModelForm组件原理及用法详解

    Django ModelForm组件原理及用法详解

    这篇文章主要介绍了Django ModelForm组件原理及用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10
  • Python heapq库案例详解

    Python heapq库案例详解

    这篇文章主要介绍了Python heapq库案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-09-09

最新评论