浅谈Python小波分析库Pywavelets的一点使用心得

 更新时间:2019年07月09日 11:40:33   作者:elite666  
这篇文章主要介绍了浅谈Python小波分析库Pywavelets的一点使用心得,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

本文介绍了Python小波分析库Pywavelets,分享给大家,具体如下:

# -*- coding: utf-8 -*- 
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import datetime 
from scipy import interpolate
from pandas import DataFrame,Series

import numpy as np 
import pywt 

data = np.linspace(1, 4, 7) 

# pywt.threshold方法讲解: 
#        pywt.threshold(data,value,mode ='soft',substitute = 0 ) 
#        data:数据集,value:阈值,mode:比较模式默认soft,substitute:替代值,默认0,float类型 

#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#output:[ 6.  6.  0.  0.5 1.  1.5 2. ] 
#soft 因为data中1小于2,所以使用6替换,因为data中第二个1.5小于2也被替换,2不小于2所以使用当前值减去2,,2.5大于2,所以2.5-2=0.5..... 

print(pywt.threshold(data, 2, 'soft',6))  


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#hard data中绝对值小于阈值2的替换为6,大于2的不替换 
print (pywt.threshold(data, 2, 'hard',6)) 


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中数值小于阈值的替换为6,大于等于的不替换 
print (pywt.threshold(data, 2, 'greater',6) )

print (data )
#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中数值大于阈值的,替换为6 
print (pywt.threshold(data, 2, 'less',6) )

[6. 6. 0. 0.5 1. 1.5 2. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 6. 6. 6. 6. ]

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt

import pywt
import pywt.data


ecg = pywt.data.ecg()

data1 = np.concatenate((np.arange(1, 400),
            np.arange(398, 600),
            np.arange(601, 1024)))
x = np.linspace(0.082, 2.128, num=1024)[::-1]
data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x)))

mode = pywt.Modes.smooth


def plot_signal_decomp(data, w, title):
  """Decompose and plot a signal S.
  S = An + Dn + Dn-1 + ... + D1
  """
  w = pywt.Wavelet(w)#选取小波函数
  a = data
  ca = []#近似分量
  cd = []#细节分量
  for i in range(5):
    (a, d) = pywt.dwt(a, w, mode)#进行5阶离散小波变换
    ca.append(a)
    cd.append(d)

  rec_a = []
  rec_d = []

  for i, coeff in enumerate(ca):
    coeff_list = [coeff, None] + [None] * i
    rec_a.append(pywt.waverec(coeff_list, w))#重构

  for i, coeff in enumerate(cd):
    coeff_list = [None, coeff] + [None] * i
    if i ==3:
      print(len(coeff))
      print(len(coeff_list))
    rec_d.append(pywt.waverec(coeff_list, w))

  fig = plt.figure()
  ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1)
  ax_main.set_title(title)
  ax_main.plot(data)
  ax_main.set_xlim(0, len(data) - 1)

  for i, y in enumerate(rec_a):
    ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2)
    ax.plot(y, 'r')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("A%d" % (i + 1))

  for i, y in enumerate(rec_d):
    ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2)
    ax.plot(y, 'g')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("D%d" % (i + 1))


#plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity")
#plot_signal_decomp(data2, 'sym5',
#          "DWT: Frequency and phase change - Symmlets5")
plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5")


plt.show()

72
5

将数据序列进行小波分解,每一层分解的结果是上次分解得到的低频信号再分解成低频和高频两个部分。如此进过N层分解后源信号X被分解为:X = D1 + D2 + … + DN + AN 其中D1,D2,…,DN分别为第一层、第二层到等N层分解得到的高频信号,AN为第N层分解得到的低频信号。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python lazypredict构建大量基本模型简化机器学习

    python lazypredict构建大量基本模型简化机器学习

    这篇文章主要介绍了python lazypredict构建大量基本模型简化机器学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • 详细介绍Scrapy shell的使用教程

    详细介绍Scrapy shell的使用教程

    Scrapy shell是一个非常有用的工具,可以帮助开发者快速地测试和调试Scrapy的爬虫代码,这篇文章主要介绍了详细介绍Scrapy shell的使用,需要的朋友可以参考下
    2023-05-05
  • Tensorflow分类器项目自定义数据读入的实现

    Tensorflow分类器项目自定义数据读入的实现

    这篇文章主要介绍了Tensorflow分类器项目自定义数据读入的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • Python中hash加密简介及使用方法

    Python中hash加密简介及使用方法

    常见 Hash 算法有 MD5 和 SHA 系列,目前 MD5 和 SHA1 已经被破解,一般推荐至少使用 SHA2-256 算法,接下来通过本文给大家介绍Python中hash加密简介及使用方法,感兴趣的朋友一起看看吧
    2022-01-01
  • Python进行统计建模

    Python进行统计建模

    这篇文章主要介绍了Python进行统计建模的方法,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
    2020-08-08
  • 用pytorch的nn.Module构造简单全链接层实例

    用pytorch的nn.Module构造简单全链接层实例

    今天小编就为大家分享一篇用pytorch的nn.Module构造简单全链接层实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python中subprocess介绍及如何使用详细讲解

    Python中subprocess介绍及如何使用详细讲解

    在实际开发过程中,我们经常会遇到需要从Python脚本中调用外部程序或脚本的场景,下面这篇文章主要给大家介绍了关于Python中subprocess介绍及如何使用详细讲解的相关资料,需要的朋友可以参考下
    2024-09-09
  • 利用Python将多张图片合成视频的实现

    利用Python将多张图片合成视频的实现

    这篇文章主要介绍了利用Python将多张图片合成视频的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • 使用python加密主机文件几种方法实现

    使用python加密主机文件几种方法实现

    本文主要介绍了使用python加密主机文件几种方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • python实现时间序列自相关图(acf)、偏自相关图(pacf)教程

    python实现时间序列自相关图(acf)、偏自相关图(pacf)教程

    这篇文章主要介绍了python实现时间序列自相关图(acf)、偏自相关图(pacf)教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06

最新评论