详解用Python为直方图绘制拟合曲线的两种方法

 更新时间:2019年08月21日 15:48:33   作者:博观厚积  
这篇文章主要介绍了详解用Python为直方图绘制拟合曲线的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

直方图是用于展示数据的分组分布状态的一种图形,用矩形的宽度和高度表示频数分布,通过直方图,用户可以很直观的看出数据分布的形状、中心位置以及数据的离散程度等。

在python中一般采用matplotlib库的hist来绘制直方图,至于如何给直方图添加拟合曲线(密度函数曲线),一般来说有以下两种方法。

方法一:采用matplotlib中的mlab模块

mlab模块是Python中强大的3D作图工具,立体感效果极佳。在这里使用mlab可以跳出直方图二维平面图形的限制,在此基础上再添加一条曲线。在这里,我们以鸢尾花iris中的数据为例,来举例说明。

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import pandas
# Load dataset
url =
"https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width','petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
print(dataset.head(10))
# descriptions
print(dataset.describe())
x = dataset.iloc[:,0] #提取第一列的sepal-length变量
mu =np.mean(x) #计算均值
sigma =np.std(x)
mu,sigma

以上为通过python导入鸢尾花iris数据,然后提取第一列的sepal-length变量为研究对象,计算出其均值、标准差,接下来就绘制带拟合曲线的直方图。

num_bins = 30 #直方图柱子的数量

n, bins, patches = plt.hist(x, num_bins,normed=1, facecolor='blue', alpha=0.5)
#直方图函数,x为x轴的值,normed=1表示为概率密度,即和为一,绿色方块,色深参数0.5.返回n个概率,直方块左边线的x值,及各个方块对象
y = mlab.normpdf(bins, mu, sigma)#拟合一条最佳正态分布曲线y 
plt.plot(bins, y, 'r--') #绘制y的曲线
plt.xlabel('sepal-length') #绘制x轴
plt.ylabel('Probability') #绘制y轴
plt.title(r'Histogram : $\mu=5.8433$,$\sigma=0.8253$')#中文标题 u'xxx' 

plt.subplots_adjust(left=0.15)#左边距 
plt.show() 


以上命令主要采用mlab.normpdf基于直方图的柱子数量、均值、方差来拟合曲线,然后再用plot画出来,这种方法的一个缺点就是画出的正态分布拟合曲线(红色虚线)并不一定能很好反映数据的分布情况,如上图所示。

方法二:采用seaborn库中的distplot绘制

Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。

import seaborn as sns 
sns.set_palette("hls") #设置所有图的颜色,使用hls色彩空间
sns.distplot(x,color="r",bins=30,kde=True)
plt.show()


在这里主要使用sns.distplot(增强版dist),柱子数量bins也设置为30,kde=True表示是否显示拟合曲线,如果为False则只出现直方图。

在这里注意一下它与前边mlab.normpdf方法不同的是,拟合曲线不是正态的,而是更好地拟合了数据的分布情况,如上图,因此比mlab.normpdf更为准确。

进一步设置sns.distplot,可以采用kde_kws(拟合曲线的设置)、hist_kws(直方柱子的设置),可以得到:

import seaborn as sns 
import matplotlib as mpl 
sns.set_palette("hls") 
mpl.rc("figure", figsize=(6,4)) 
sns.distplot(x,bins=30,kde_kws={"color":"seagreen", "lw":3 }, hist_kws={ "color": "b" }) 
plt.show()


其中,lw为曲线粗细程度。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 深入了解Python的继承

    深入了解Python的继承

    这篇文章主要为大家介绍了Python 继承,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • Python中的with...as用法介绍

    Python中的with...as用法介绍

    这篇文章主要介绍了Python中的with...as用法介绍,本文直接给出用法实例,需要的朋友可以参考下
    2015-05-05
  • 在Linux上安装Python的Flask框架和创建第一个app实例的教程

    在Linux上安装Python的Flask框架和创建第一个app实例的教程

    这篇文章主要介绍了在Linux上安装Python的Flask框架和创建第一个app实例,包括创建一个HTML模版和利用Jinja2模板引擎来做渲染的步骤,需要的朋友可以参考下
    2015-03-03
  • Python中的len()函数是什么意思

    Python中的len()函数是什么意思

    这篇文章主要介绍了Python中的len()函数是什么意思以及len()函数使用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • 搭建 Selenium+Python开发环境详细步骤

    搭建 Selenium+Python开发环境详细步骤

    这篇文章主要介绍了搭建 Selenium+Python开发环境详细步骤的相关资料,需要的朋友可以参考下
    2022-10-10
  • 详细介绍pandas的DataFrame的append方法使用

    详细介绍pandas的DataFrame的append方法使用

    这篇文章主要介绍了详细介绍pandas的DataFrame的append方法使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • Python实现树的先序、中序、后序排序算法示例

    Python实现树的先序、中序、后序排序算法示例

    这篇文章主要介绍了Python实现树的先序、中序、后序排序算法,结合具体实例形式分析了Python数据结构中树的定义及常用遍历、排序操作技巧,需要的朋友可以参考下
    2017-06-06
  • Python headers请求头如何实现快速添加

    Python headers请求头如何实现快速添加

    这篇文章主要介绍了Python headers请求头如何实现快速添加,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • opencv与numpy的图像基本操作

    opencv与numpy的图像基本操作

    这篇文章主要介绍了opencv与numpy的图像基本操作,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • Python使用Pillow进行图像处理

    Python使用Pillow进行图像处理

    这篇文章介绍了Python使用Pillow进行图像处理的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-06-06

最新评论