python 计算积分图和haar特征的实例代码

 更新时间:2019年11月20日 15:32:30   作者:阳光玻璃杯  
今天小编就为大家分享一篇python 计算积分图和haar特征的实例代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

下面的代码通过积分图计算一张图片的一种haar特征的所有可能的值。初步学习图像处理并尝试写代码,如有错误,欢迎指出。

import cv2
import numpy as np
import matplotlib.pyplot as plt
#
#计算积分图
#
def integral(img):
  integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int32)
  for x in range(img.shape[0]):
    sum_clo = 0
    for y in range(img.shape[1]):
      sum_clo = sum_clo + img[x][y]
      integ_graph[x][y] = integ_graph[x-1][y] + sum_clo;
  return integ_graph

# Types of Haar-like rectangle features
#  --- ---
# |  |  |
# | - | + |
# |  |  |
# --- ---
#
#就算所有需要计算haar特征的区域
#
def getHaarFeaturesArea(width,height):
  widthLimit = width-1
  heightLimit = height/2-1
  features = []
  for w in range(1,int(widthLimit)):
    for h in range(1,int(heightLimit)):
      wMoveLimit = width - w
      hMoveLimit = height - 2*h
      for x in range(0, wMoveLimit):
        for y in range(0, hMoveLimit):
          features.append([x, y, w, h])
  return features
#
#通过积分图特征区域计算haar特征
#
def calHaarFeatures(integral_graph,features_graph):
  haarFeatures = []
  for num in range(len(features_graph)):
    #计算左面的矩形区局的像素和
    haar1 = integral_graph[features_graph[num][0]][features_graph[num][1]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]]
    #计算右面的矩形区域的像素和
    haar2 = integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+2*features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+2*features_graph[num][3]]
    #右面的像素和减去左面的像素和
    haarFeatures.append(haar2-haar1)
  return haarFeatures


img = cv2.imread("faces/face00001.bmp",0)
integeralGraph = integral(img)
featureAreas = getHaarFeaturesArea(img.shape[0],img.shape[1])
haarFeatures = calHaarFeatures(integeralGraph,featureAreas)
print(haarFeatures)

以上这篇python 计算积分图和haar特征的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 如何利用python给图片添加半透明水印

    如何利用python给图片添加半透明水印

    这篇文章主要给大家介绍了关于如何利用python给图片添加半透明水印的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-09-09
  • 使用OpenCV实现人脸图像卡通化的示例代码

    使用OpenCV实现人脸图像卡通化的示例代码

    这篇文章主要介绍了使用OpenCV实现人脸图像卡通化的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • python sorted函数原理解析及练习

    python sorted函数原理解析及练习

    这篇文章主要介绍了python sorted函数原理解析及练习,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • python中的测试框架

    python中的测试框架

    这篇文章主要介绍了python中测试框架的相关资料,帮助大家更好的理解和使用python进行测试,感兴趣的朋友可以了解下
    2020-11-11
  • Python内置函数delattr的具体用法

    Python内置函数delattr的具体用法

    本篇文章主要介绍了Python内置函数delattr的具体用法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • 使用python对excle和json互相转换的示例

    使用python对excle和json互相转换的示例

    今天小编就为大家分享一篇使用python对excle和json互相转换的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Tensorflow 多线程设置方式

    Tensorflow 多线程设置方式

    今天小编就为大家分享一篇Tensorflow 多线程设置方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python赋值逻辑的实现

    Python赋值逻辑的实现

    本文主要介绍了 Python赋值逻辑的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • python调用win32接口进行截图的示例

    python调用win32接口进行截图的示例

    这篇文章主要介绍了python调用win32接口进行截图的示例,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-11-11
  • Django框架中模型的用法

    Django框架中模型的用法

    这篇文章介绍了Django框架中模型的用法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-06-06

最新评论