python利用dlib获取人脸的68个landmark

 更新时间:2019年11月27日 10:58:10   作者:明素07  
这篇文章主要介绍了python利用dlib获取人脸的68个landmark,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

(1) 单人脸情况

import cv2
import dlib

path = "1.jpg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框
detector = dlib.get_frontal_face_detector()
# 获取人脸关键点检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#获取人脸框位置信息
dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别
for face in dets:
  shape = predictor(img, face) # 寻找人脸的68个标定点
  # 遍历所有点,打印出其坐标,并圈出来
  for pt in shape.parts():
    pt_pos = (pt.x, pt.y)
    cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

  cv2.imshow("image", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

(2) 多人脸情况

import cv2
import dlib

path1 = "zxc.jpg"
img = cv2.imread(path1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框
detector = dlib.get_frontal_face_detector()
# 获取人脸关键点检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#获取人脸框位置信息
dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别

for i in range(len(dets)):
  shape = predictor(img, dets[i]) # 寻找人脸的68个标定点
  # 遍历所有点,打印出其坐标,并圈出来
  for pt in shape.parts():
    pt_pos = (pt.x, pt.y)
    cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

cv2.imshow("image", img)

cv2.waitKey(0)#等待键盘输入
cv2.destroyAllWindows()

(3) 获取电脑摄像头实时识别标定

import cv2
import dlib
import numpy as np

cap = cv2.VideoCapture(0)#打开笔记本的内置摄像头,若参数是视频文件路径则打开视频
cap.isOpened()

def key_points(img):
  points_keys = []
  PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
  detector = dlib.get_frontal_face_detector()
  predictor = dlib.shape_predictor(PREDICTOR_PATH)
  rects = detector(img,1)

  for i in range(len(rects)):
    landmarks = np.matrix([[p.x,p.y] for p in predictor(img,rects[i]).parts()])
    for point in landmarks:
      pos = (point[0,0],point[0,1])
      points_keys.append(pos)
      cv2.circle(img,pos,2,(255,0,0),-1)
  return img

while(True):
  ret, frame = cap.read()#按帧读取视频,ret,frame是cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像,是个三维矩阵。
  # gray = cv2.cvtColor(frame)
  face_key = key_points(frame)
  cv2.imshow('frame',face_key)
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break

cap.release()#释放摄像头
cv2.destroyAllWindows()#关闭所有图像窗口

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python解决Missing 1 required positional argument报错问题

    python解决Missing 1 required positional ar

    这篇文章主要介绍了python解决Missing 1 required positional argument报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-12-12
  • 用python实现一个简单计算器(完整DEMO)

    用python实现一个简单计算器(完整DEMO)

    这篇文章主要介绍了用python实现一个简单计算器(完整DEMO),需要的朋友可以参考下
    2020-10-10
  • python统计字符的个数代码实例

    python统计字符的个数代码实例

    在本篇文章里小编给大家整理了关于python统计字符的个数代码实例内容,需要的朋友们可以参考下。
    2020-02-02
  • python爬虫入门教程之点点美女图片爬虫代码分享

    python爬虫入门教程之点点美女图片爬虫代码分享

    这篇文章主要介绍了python爬虫入门教程之点点美女图片爬虫代码分享,本文以采集抓取点点网美女图片为例,需要的朋友可以参考下
    2014-09-09
  • Python3通过chmod修改目录或文件权限的方法示例

    Python3通过chmod修改目录或文件权限的方法示例

    这篇文章主要介绍了Python3通过chmod修改目录或文件权限的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-06-06
  • 基于Python3 逗号代码 和 字符图网格(详谈)

    基于Python3 逗号代码 和 字符图网格(详谈)

    下面小编就为大家带来一篇基于Python3 逗号代码 和 字符图网格(详谈)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • Python中turtle.write方法使用说明

    Python中turtle.write方法使用说明

    turtle模块以面向对象和面向过程的方式提供turtle图形基元,由于它使用Tkinter作为基础图形,因此需要安装有Tk支持的Python版本,下面这篇文章主要给大家介绍了关于Python中turtle.write方法使用说明的相关资料,需要的朋友可以参考下
    2022-02-02
  • 使用Python构建一个Hexo博客发布工具

    使用Python构建一个Hexo博客发布工具

    虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个Hexo博客发布工具吧
    2025-04-04
  • python使用锁访问共享变量实例解析

    python使用锁访问共享变量实例解析

    这篇文章主要介绍了python使用锁访问共享变量实例解析,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-02-02
  • windows下添加Python环境变量的方法汇总

    windows下添加Python环境变量的方法汇总

    默认情况下,在windows下安装python之后,系统并不会自动添加相应的环境变量。此时不能在命令行直接使用python命令。今天我们就来看下,如何简单快捷的在windows下添加Python环境变量
    2018-05-05

最新评论