pytorch:实现简单的GAN示例(MNIST数据集)

 更新时间:2020年01月10日 09:17:37   作者:xckkcxxck  
今天小编就为大家分享一篇pytorch:实现简单的GAN示例(MNIST数据集),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 13 10:22:45 2018
@author: www
"""
 
import torch
from torch import nn
from torch.autograd import Variable
 
import torchvision.transforms as tfs
from torch.utils.data import DataLoader, sampler
from torchvision.datasets import MNIST
 
import numpy as np
 
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
 
def show_images(images): # 定义画图工具
  images = np.reshape(images, [images.shape[0], -1])
  sqrtn = int(np.ceil(np.sqrt(images.shape[0])))
  sqrtimg = int(np.ceil(np.sqrt(images.shape[1])))
 
  fig = plt.figure(figsize=(sqrtn, sqrtn))
  gs = gridspec.GridSpec(sqrtn, sqrtn)
  gs.update(wspace=0.05, hspace=0.05)
 
  for i, img in enumerate(images):
    ax = plt.subplot(gs[i])
    plt.axis('off')
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_aspect('equal')
    plt.imshow(img.reshape([sqrtimg,sqrtimg]))
  return 
  
def preprocess_img(x):
  x = tfs.ToTensor()(x)
  return (x - 0.5) / 0.5
 
def deprocess_img(x):
  return (x + 1.0) / 2.0
 
class ChunkSampler(sampler.Sampler): # 定义一个取样的函数
  """Samples elements sequentially from some offset. 
  Arguments:
    num_samples: # of desired datapoints
    start: offset where we should start selecting from
  """
  def __init__(self, num_samples, start=0):
    self.num_samples = num_samples
    self.start = start
 
  def __iter__(self):
    return iter(range(self.start, self.start + self.num_samples))
 
  def __len__(self):
    return self.num_samples
    
NUM_TRAIN = 50000
NUM_VAL = 5000
 
NOISE_DIM = 96
batch_size = 128
 
train_set = MNIST('E:/data', train=True, transform=preprocess_img)
 
train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0))
 
val_set = MNIST('E:/data', train=True, transform=preprocess_img)
 
val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN))
 
imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 可视化图片效果
show_images(imgs)
 
#判别网络
def discriminator():
  net = nn.Sequential(    
      nn.Linear(784, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 1)
    )
  return net
  
#生成网络
def generator(noise_dim=NOISE_DIM):  
  net = nn.Sequential(
    nn.Linear(noise_dim, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 784),
    nn.Tanh()
  )
  return net
  
#判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1
 
bce_loss = nn.BCEWithLogitsLoss()#交叉熵损失函数
 
def discriminator_loss(logits_real, logits_fake): # 判别器的 loss
  size = logits_real.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  false_labels = Variable(torch.zeros(size, 1)).float()
  loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)
  return loss
  
def generator_loss(logits_fake): # 生成器的 loss 
  size = logits_fake.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  loss = bce_loss(logits_fake, true_labels)
  return loss
  
# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999
def get_optimizer(net):
  optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999))
  return optimizer
  
def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, 
        noise_size=96, num_epochs=10):
  iter_count = 0
  for epoch in range(num_epochs):
    for x, _ in train_data:
      bs = x.shape[0]
      # 判别网络
      real_data = Variable(x).view(bs, -1) # 真实数据
      logits_real = D_net(real_data) # 判别网络得分
      
      sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据
      logits_fake = D_net(fake_images) # 判别网络得分
 
      d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss
      D_optimizer.zero_grad()
      d_total_error.backward()
      D_optimizer.step() # 优化判别网络
      
      # 生成网络
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据
 
      gen_logits_fake = D_net(fake_images)
      g_error = generator_loss(gen_logits_fake) # 生成网络的 loss
      G_optimizer.zero_grad()
      g_error.backward()
      G_optimizer.step() # 优化生成网络
 
      if (iter_count % show_every == 0):
        print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item()))
        imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())
        show_images(imgs_numpy[0:16])
        plt.show()
        print()
      iter_count += 1
 
D = discriminator()
G = generator()
 
D_optim = get_optimizer(D)
G_optim = get_optimizer(G)
 
train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)      

以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python PyQt5标准对话框用法示例

    Python PyQt5标准对话框用法示例

    这篇文章主要介绍了Python PyQt5标准对话框用法,结合实例形式分析了PyQt5常用的标准对话框及相关使用技巧,需要的朋友可以参考下
    2017-08-08
  • python之线程通过信号pyqtSignal刷新ui的方法

    python之线程通过信号pyqtSignal刷新ui的方法

    今天小编就为大家分享一篇python之线程通过信号pyqtSignal刷新ui的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python创建模板文件及使用教程示例

    python创建模板文件及使用教程示例

    这篇文章主要介绍了python创建模板文件及使用教程示例
    2021-10-10
  • 浅谈对pytroch中torch.autograd.backward的思考

    浅谈对pytroch中torch.autograd.backward的思考

    这篇文章主要介绍了对pytroch中torch.autograd.backward的思考,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • python中import和from-import的区别解析

    python中import和from-import的区别解析

    这篇文章主要介绍了python中import和from-import的区别解析,本文通过实例代码给大家讲解的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-12-12
  • Python多路复用selector模块的基本使用

    Python多路复用selector模块的基本使用

    Python提供了selector模块来实现IO多路复用,这篇文章给大家介绍了Python多路复用selector模块的基本使用,感兴趣的朋友一起看看吧
    2021-11-11
  • Python使用虚拟环境(安装下载更新卸载)命令

    Python使用虚拟环境(安装下载更新卸载)命令

    这篇文章主要为大家介绍了Python使用虚拟环境(安装下载更新卸载)命令,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-11-11
  • Python安装spark的详细过程

    Python安装spark的详细过程

    这篇文章主要介绍了Python安装spark的详细过程,本文通过图文实例代码相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-10-10
  • Python实现拉格朗日插值法的示例详解

    Python实现拉格朗日插值法的示例详解

    插值法是一种数学方法,用于在已知数据点(离散数据)之间插入数据,以生成连续的函数曲线,而格朗日插值法是一种多项式插值法。本文就来用Python实现拉格朗日插值法,希望对大家有所帮助
    2023-02-02
  • python应用之如何使用Python发送通知到微信

    python应用之如何使用Python发送通知到微信

    现在通过发微信信息来做消息通知和告警已经很普遍了,下面这篇文章主要给大家介绍了关于python应用之如何使用Python发送通知到微信的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-03-03

最新评论