Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的

 更新时间:2020年04月20日 11:52:32   作者:xf__mao  
这篇文章主要介绍了Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

实验环境:tensorflow版本1.2.0,python2.7

介绍

depthwise_conv2d来源于深度可分离卷积:

Xception: Deep Learning with Depthwise Separable Convolutions

tf.nn.depthwise_conv2d(input,filter,strides,padding,rate=None,name=None,data_format=None)

除去name参数用以指定该操作的name,data_format指定数据格式,与方法有关的一共五个参数:

input:
指需要做卷积的输入图像,要求是一个4维Tensor,具有[batch, height, width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数]

filter:
相当于CNN中的卷积核,要求是一个4维Tensor,具有[filter_height, filter_width, in_channels, channel_multiplier]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,输入通道数,输出卷积乘子],同理这里第三维in_channels,就是参数value的第四维

strides:
卷积的滑动步长。

padding:
string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同边缘填充方式。

rate:
这个参数的详细解释见【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?

结果返回一个Tensor,shape为[batch, out_height, out_width, in_channels * channel_multiplier],注意这里输出通道变成了in_channels * channel_multiplier

实验

为了形象的展示depthwise_conv2d,我们必须要建立自定义的输入图像和卷积核

img1 = tf.constant(value=[[[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]]]],dtype=tf.float32)
img2 = tf.constant(value=[[[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]]]],dtype=tf.float32)
img = tf.concat(values=[img1,img2],axis=3)
filter1 = tf.constant(value=0, shape=[3,3,1,1],dtype=tf.float32)
filter2 = tf.constant(value=1, shape=[3,3,1,1],dtype=tf.float32)
filter3 = tf.constant(value=2, shape=[3,3,1,1],dtype=tf.float32)
filter4 = tf.constant(value=3, shape=[3,3,1,1],dtype=tf.float32)
filter_out1 = tf.concat(values=[filter1,filter2],axis=2)
filter_out2 = tf.concat(values=[filter3,filter4],axis=2)
filter = tf.concat(values=[filter_out1,filter_out2],axis=3)

建立好了img和filter,就可以做卷积了

out_img = tf.nn.conv2d(input=img, filter=filter, strides=[1,1,1,1], padding='VALID')

好了,用一张图来详细展示这个过程

 

这是普通的卷积过程,我们再来看深度卷积。

out_img = tf.nn.depthwise_conv2d(input=img, filter=filter, strides=[1,1,1,1], rate=[1,1], padding='VALID')

 

现在我们可以形象的解释一下depthwise_conv2d卷积了。看普通的卷积,我们对卷积核每一个out_channel的两个通道分别和输入的两个通道做卷积相加,得到feature map的一个channel,而depthwise_conv2d卷积,我们对每一个对应的in_channel,分别卷积生成两个out_channel,所以获得的feature map的通道数量可以用in_channel* channel_multiplier来表达,这个channel_multiplier,就可以理解为卷积核的第四维。

代码清单

import tensorflow as tf


img1 = tf.constant(value=[[[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]]]],dtype=tf.float32)
img2 = tf.constant(value=[[[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]]]],dtype=tf.float32)
img = tf.concat(values=[img1,img2],axis=3)
filter1 = tf.constant(value=0, shape=[3,3,1,1],dtype=tf.float32)
filter2 = tf.constant(value=1, shape=[3,3,1,1],dtype=tf.float32)
filter3 = tf.constant(value=2, shape=[3,3,1,1],dtype=tf.float32)
filter4 = tf.constant(value=3, shape=[3,3,1,1],dtype=tf.float32)
filter_out1 = tf.concat(values=[filter1,filter2],axis=2)
filter_out2 = tf.concat(values=[filter3,filter4],axis=2)
filter = tf.concat(values=[filter_out1,filter_out2],axis=3)

out_img = tf.nn.depthwise_conv2d(input=img, filter=filter, strides=[1,1,1,1], rate=[1,1], padding='VALID')

输出:

rate=1, VALID mode result:
[[[[ 0. 36. 9. 27.]
[ 0. 54. 9. 27.]]

[[ 0. 36. 9. 27.]
[ 0. 54. 9. 27.]]]]

到此这篇关于Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的的文章就介绍到这了,更多相关Tensorflow tf.nn.depthwise_conv2d深度卷积内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 串口读取+存储+输出处理实例

    python 串口读取+存储+输出处理实例

    今天小编就为大家分享一篇python 串口读取+存储+输出处理实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python ffmpeg任意提取视频帧的方法

    python ffmpeg任意提取视频帧的方法

    这篇文章主要介绍了python ffmpeg任意提取视频帧的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • python笔记(1) 关于我们应不应该继续学习python

    python笔记(1) 关于我们应不应该继续学习python

    关于Python,如果你要学习,建议大家查看一下网站:因为本人也是刚刚决定收集点零碎时间来学习下它,推荐可能并不是最好的
    2012-10-10
  • PyTorch 导数应用的使用教程

    PyTorch 导数应用的使用教程

    这篇文章主要介绍了PyTorch 导数应用的使用教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • python使用property完成数据隐藏封装与校验

    python使用property完成数据隐藏封装与校验

    这篇文章主要为大家详细介绍了python使用property完成数据隐藏封装与校验,实现安全修改,文中的示例代码讲解详细,希望对大家有所帮助
    2024-11-11
  • 深入探讨Python中的内置类属性`__repr__`

    深入探讨Python中的内置类属性`__repr__`

    在Python中,__repr__是一个特殊的内置类属性,用于定义类的字符串表示形式,本文将深入探讨__repr__的作用、用法以及一些实际应用场景,希望对大家有所帮助
    2023-12-12
  • Python小工具之消耗系统指定大小内存的方法

    Python小工具之消耗系统指定大小内存的方法

    今天小编就为大家分享一篇Python小工具之消耗系统指定大小内存的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • python实现淘宝购物系统

    python实现淘宝购物系统

    这篇文章主要为大家详细介绍了python实现简易的淘宝购物系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-10-10
  • Python实现带下标索引的遍历操作示例

    Python实现带下标索引的遍历操作示例

    这篇文章主要介绍了Python实现带下标索引的遍历操作,结合具体实例形式分析了2种带索引的遍历操作实现方法及相关操作注意事项,需要的朋友可以参考下
    2019-05-05
  • django echarts饼图数据动态加载的实例

    django echarts饼图数据动态加载的实例

    今天小编就为大家分享一篇django echarts饼图数据动态加载的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08

最新评论