Python sklearn中的.fit与.predict的用法说明

 更新时间:2020年06月28日 11:10:42   作者:冽夫  
这篇文章主要介绍了Python sklearn中的.fit与.predict的用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我就废话不多说了,大家还是直接看代码吧~

clf=KMeans(n_clusters=5) #创建分类器对象
fit_clf=clf.fit(X) #用训练器数据拟合分类器模型
clf.predict(X) #也可以给新数据数据对其预测

print(clf.cluster_centers_) #输出5个类的聚类中心

y_pred = clf.fit_predict(X) #用训练器数据X拟合分类器模型并对训练器数据X进行预测

print(y_pred) #输出预测结果

补充知识:sklearn中调用某个机器学习模型model.predict(x)和model.predict_proba(x)的区别

model.predict_proba(x)不同于model.predict(),它返回的预测值为获得所有结果的概率。(有多少个分类结果,每行就有多少个概率,对每个结果都有一个概率值,如0、1两分类就有两个概率)

我们直接上代码,通过具体例子来进一步讲解:

python3 代码实现:

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 27 21:25:39 2019

@author: ZQQ
"""
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
import numpy as np
import warnings
warnings.filterwarnings("ignore")
# 这个方法只是解决了表面,没有根治

# 数据(特征,属性)
x_train = np.array([[1,2,3], 
          [1,5,4], 
          [2,2,2], 
          [4,5,6], 
          [3,5,4], 
          [1,7,2]]) 
# 数据的标签
y_train = np.array([1, 0, 1, 1, 0, 0]) 
 
# 测试数据
x_test = np.array([[2,1,2], 
          [3,2,6], 
          [2,6,4]]) 
 
# 导入模型
model = LogisticRegression() 
 
#model = RandomForestClassifier()

#model=XGBClassifier()

model.fit(x_train, y_train)

# 返回预测标签 
print(model.predict(x_test)) 
 
print('---------------------------------------')

# 返回预测属于某标签的概率 
print(model.predict_proba(x_test)) 
 

运行结果:

分析结果:

使用model.predict() :

预测[2,1,2]为1类

预测[3,2,6]为1类

预测[2,6,4]为0类

使用model.predict_proba() :

预测[2,1,2]的标签是0的概率为0.19442289,1的概率为0.80557711

预测[3,2,6]的标签是0的概率为0.04163615,1的概率为0.95836385

预测[2,6,4]的标签是0的概率为0.83059324,1的概率为0.16940676

预测为0类的概率值和预测为1的概率值和为1

同理,如果标签继续增加,3类:0,1, 2

预测为0类的概率值:a

预测为1类的概率值:b

预测为2类的概率值:c

预测出来的概率值的和a+b+c=1

注:model.predict_proba()返回所有标签值可能性概率值,这些值是如何排序的呢?

返回模型中每个类的样本概率,其中类按类self.classes_进行排序。

通过numpy.unique(label)方法,对label中的所有标签值进行从小到大的去重排序。

得到一个从小到大唯一值的排序。这也就对应于model.predict_proba()的行返回结果。

以上这篇Python sklearn中的.fit与.predict的用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 一个检测OpenSSL心脏出血漏洞的Python脚本分享

    一个检测OpenSSL心脏出血漏洞的Python脚本分享

    这篇文章主要介绍了一个检测OpenSSL心脏出血漏洞的Python脚本,心脏出血漏洞是互联网上的地震,看到的同学赶紧升级OpenSSL,避免黑客入侵
    2014-04-04
  • Python命令行参数解析模块optparse使用实例

    Python命令行参数解析模块optparse使用实例

    这篇文章主要介绍了Python命令行参数解析模块optparse使用实例,本文讲解了增加选项(add_option())、行为(action)、设置默认值(default)、生成帮助提示(help)、设置boolean值、错误处理、选项组(Grouping Options)等内容,需要的朋友可以参考下
    2015-04-04
  • python使用FastAPI获取请求头信息的两种方法

    python使用FastAPI获取请求头信息的两种方法

    本文聚焦 FastAPI 获取请求头信息的两种方法,首先阐述使用Request对象,通过在路由处理函数中注入Request,接着介绍参数依赖注入法,在函数参数里用Header声明请求头参数,文中有相关的代码示例供大家参考,需要的朋友可以参考下
    2025-02-02
  • Python字符串删除指定字符的三个方法

    Python字符串删除指定字符的三个方法

    这篇文章主要给大家介绍了关于Python字符串删除指定字符的三个方法,我们在使用 Python处理字符串的时候,经常会遇到一些字符串中出现了指定字符,需要的朋友可以参考下
    2023-07-07
  • Python采用Django制作简易的知乎日报API

    Python采用Django制作简易的知乎日报API

    这篇文章主要为大家详细介绍了Python采用Django制作简易的知乎日报API,感兴趣的小伙伴们可以参考一下
    2016-08-08
  • Python turtle实现贪吃蛇游戏

    Python turtle实现贪吃蛇游戏

    这篇文章主要为大家详细介绍了Python turtle实现贪吃蛇游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-06-06
  • Python实现带参数的用户验证功能装饰器示例

    Python实现带参数的用户验证功能装饰器示例

    这篇文章主要介绍了Python实现带参数的用户验证功能装饰器,结合实例形式分析了Python用户验证装饰器具体定义及使用技巧,需要的朋友可以参考下
    2018-12-12
  • Python实现简单求解给定整数的质因数算法示例

    Python实现简单求解给定整数的质因数算法示例

    这篇文章主要介绍了Python实现简单求解给定整数的质因数算法,结合实例形式分析了Python正整数分解质因数的相关操作技巧,需要的朋友可以参考下
    2018-03-03
  • Python+Selenium+Webdriver实现自动执行微软奖励积分脚本

    Python+Selenium+Webdriver实现自动执行微软奖励积分脚本

    这篇文章主要为大家详细介绍了如何利用Python+Selenium+Webdriver实现自动执行微软奖励积分脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-02-02
  • python飞机大战 pygame游戏创建快速入门详解

    python飞机大战 pygame游戏创建快速入门详解

    这篇文章主要介绍了python飞机大战 pygame游戏创建,结合实例形式详细分析了Python使用pygame创建飞机大战游戏的具体步骤与相关操作注意事项,需要的朋友可以参考下
    2019-12-12

最新评论