Python实现一个优先级队列的方法

 更新时间:2020年07月31日 11:16:23   作者:David Beazley  
这篇文章主要介绍了Python实现一个优先级队列的方法,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下

问题

怎样实现一个按优先级排序的队列? 并且在这个队列上面每次 pop 操作总是返回优先级最高的那个元素

解决方案

下面的类利用 heapq 模块实现了一个简单的优先级队列:

import heapq

class PriorityQueue:
 def __init__(self):
  self._queue = []
  self._index = 0

 def push(self, item, priority):
  heapq.heappush(self._queue, (-priority, self._index, item))
  self._index += 1

 def pop(self):
  return heapq.heappop(self._queue)[-1]

下面是它的使用方式:

>>> class Item:
...  def __init__(self, name):
...   self.name = name
...  def __repr__(self):
...   return 'Item({!r})'.format(self.name)
...
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
>>>

仔细观察可以发现,第一个 pop() 操作返回优先级最高的元素。 另外注意到如果两个有着相同优先级的元素( foogrok ),pop 操作按照它们被插入到队列的顺序返回的。

讨论

这一小节我们主要关注 heapq 模块的使用。 函数 heapq.heappush() heapq.heappop() 分别在队列 _queue 上插入和删除第一个元素, 并且队列 _queue 保证第一个元素拥有最高优先级( 1.4 节已经讨论过这个问题)。 heappop() 函数总是返回”最小的”的元素,这就是保证队列pop操作返回正确元素的关键。 另外,由于 push 和 pop 操作时间复杂度为 O(log N),其中 N 是堆的大小,因此就算是 N 很大的时候它们运行速度也依旧很快。

在上面代码中,队列包含了一个 (-priority, index, item) 的元组。 优先级为负数的目的是使得元素按照优先级从高到低排序。 这个跟普通的按优先级从低到高排序的堆排序恰巧相反。

index 变量的作用是保证同等优先级元素的正确排序。 通过保存一个不断增加的 index 下标变量,可以确保元素按照它们插入的顺序排序。 而且, index 变量也在相同优先级元素比较的时候起到重要作用。

为了阐明这些,先假定 Item 实例是不支持排序的:

>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

如果你使用元组 (priority, item) ,只要两个元素的优先级不同就能比较。 但是如果两个元素优先级一样的话,那么比较操作就会跟之前一样出错:

>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

通过引入另外的 index 变量组成三元组 (priority, index, item) ,就能很好的避免上面的错误, 因为不可能有两个元素有相同的 index 值。Python 在做元组比较时候,如果前面的比较已经可以确定结果了, 后面的比较操作就不会发生了:

>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c
True
>>>

如果你想在多个线程中使用同一个队列,那么你需要增加适当的锁和信号量机制。 可以查看 12.3 小节的例子演示是怎样做的。

heapq 模块的官方文档有更详细的例子程序以及对于堆理论及其实现的详细说明。

以上就是Python实现一个优先级队列的方法的详细内容,更多关于Python实现优先级队列的资料请关注脚本之家其它相关文章!

相关文章

  • python如何通过twisted实现数据库异步插入

    python如何通过twisted实现数据库异步插入

    这篇文章主要为大家详细介绍了python如何通过twisted实现数据库异步插入,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • python笔记之使用fillna()填充缺失值

    python笔记之使用fillna()填充缺失值

    这篇文章主要介绍了python笔记之使用fillna()填充缺失值方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • 教你轻松解决selenium打开浏览器自动退出

    教你轻松解决selenium打开浏览器自动退出

    这篇文章主要给大家介绍了关于如何轻松解决selenium打开浏览器自动退出的相关资料,Selenium是一个用于Web应用程序测试的工具,Selenium测试直接运行在浏览器中,今天在打开网页时,浏览器总是一闪而退,需要的朋友可以参考下
    2023-08-08
  • Python实现识别手写数字 Python图片读入与处理

    Python实现识别手写数字 Python图片读入与处理

    这篇文章主要为大家详细介绍了Python实现识别手写数字,Python图片的读入与处理,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • python基础之爬虫入门

    python基础之爬虫入门

    这篇文章主要介绍了python基础之爬虫入门,文中有非常详细的代码示例,对正在学习python爬虫的小伙伴们有很好地帮助哟,需要的朋友可以参考下
    2021-05-05
  • Python面向对象编程关键深度探索类与对象

    Python面向对象编程关键深度探索类与对象

    这篇文章主要为大家介绍了Python面向对象编程关键深度探索类与对象示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • Python使用Flask框架获取当前查询参数的方法

    Python使用Flask框架获取当前查询参数的方法

    这篇文章主要介绍了Python使用Flask框架获取当前查询参数的方法,实例分析了query_string获取查询参数的技巧,需要的朋友可以参考下
    2015-03-03
  • pytorch中torch.topk()函数的快速理解

    pytorch中torch.topk()函数的快速理解

    我们在做分类算法时,时常见到@acc1和@acc5的情况,@acc1比较容易实现,但是一直苦于@acc5算法的实现,在此为大家提供一种@topk的实现方法,这篇文章主要给大家介绍了关于pytorch中torch.topk()函数的快速理解,需要的朋友可以参考下
    2022-02-02
  • 解决Python3 struct报错argument for 's' must be a bytes object

    解决Python3 struct报错argument for 's'&

    这篇文章主要为大家介绍了解决Python3 struct报错argument for 's' must be a bytes object方法详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • Python编程使用matplotlib绘制动态圆锥曲线示例

    Python编程使用matplotlib绘制动态圆锥曲线示例

    这篇文章主要介绍了Python使用matplotlib绘制动态的圆锥曲线示例实现代码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2021-10-10

最新评论