详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系

 更新时间:2020年08月04日 10:47:56   作者:LoveWeeknd  
这篇文章主要介绍了详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

参考官网地址:

Windows端:https://tensorflow.google.cn/install/source_windows

CPU

Version Python version Compiler Build tools
tensorflow-1.11.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.10.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.9.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.8.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.7.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.6.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.5.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.4.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.3.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.2.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.1.0 3.5 MSVC 2015 update 3 Cmake v3.6.3
tensorflow-1.0.0 3.5 MSVC 2015 update 3 Cmake v3.6.3

GPU

Version Python version Compiler Build tools cuDNN CUDA
tensorflow_gpu-1.11.0 3.5-3.6 MSVC 2015 update 3 Bazel 0.15.0 7 9
tensorflow_gpu-1.10.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow_gpu-1.9.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow_gpu-1.8.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow_gpu-1.7.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow_gpu-1.6.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow_gpu-1.5.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9
tensorflow_gpu-1.4.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 6 8
tensorflow_gpu-1.3.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 6 8
tensorflow_gpu-1.2.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 5.1 8
tensorflow_gpu-1.1.0 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8
tensorflow_gpu-1.0.0 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8

Linux端:https://tensorflow.google.cn/install/source

Linux

Version Python version Compiler Build tools
tensorflow-1.11.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.10.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.9.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.11.0
tensorflow-1.8.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.7.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.6.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0
tensorflow-1.5.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0
tensorflow-1.4.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4
tensorflow-1.3.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.2.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.1.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2
tensorflow-1.0.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2

Version Python version Compiler Build tools cuDNN CUDA
tensorflow_gpu-1.11.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.10.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.9.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.11.0 7 9
tensorflow_gpu-1.8.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0 7 9
tensorflow_gpu-1.7.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.6.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.5.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0 7 9
tensorflow_gpu-1.4.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4 6 8
tensorflow_gpu-1.3.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 6 8
tensorflow_gpu-1.2.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 5.1 8
tensorflow_gpu-1.1.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8

macOS

CPU

Version Python version Compiler Build tools
tensorflow-1.11.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.15.0
tensorflow-1.10.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.15.0
tensorflow-1.9.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.11.0
tensorflow-1.8.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.10.1
tensorflow-1.7.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.10.1
tensorflow-1.6.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.8.1
tensorflow-1.5.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.8.1
tensorflow-1.4.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.5.4
tensorflow-1.3.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.5
tensorflow-1.2.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.5
tensorflow-1.1.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2
tensorflow-1.0.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2

GPU

Version Python version Compiler Build tools cuDNN CUDA
tensorflow_gpu-1.1.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 5.1 8

tensorflow的CUDA driver version is insufficient for CUDA runtime version 问题解决方案

CUDA driver version is insufficient for CUDA runtime version 翻译过来就是CUDA的驱动程序版本跟CUDA的运行时版本不匹配!

1.CUDA driver version(驱动版本):就是NVIDIA GPU的驱动程序版本;

查看命令:nvidia-smi

我们看到我的GPU的驱动程序版本是:384.81

2.CUDA runtime version(运行时版本):是在python中安装的cudatoolkit和cudnn程序包的版本

查看命令:pip list

python安装的cudatoolkit和cudnn程序包版本是:9.2

3.nvidia 驱动和cuda runtime 版本对应关系

运行时版本   驱动版本
CUDA 9.1     387.xx 
CUDA 9.0     384.xx 
CUDA 8.0     375.xx (GA2) 
CUDA 8.0     367.4x 
CUDA 7.5     352.xx 
CUDA 7.0     346.xx 
CUDA 6.5     340.xx 
CUDA 6.0     331.xx 
CUDA 5.5     319.xx 
CUDA 5.0     304.xx 
CUDA 4.2     295.41 
CUDA 4.1     285.05.33 
CUDA 4.0     270.41.19 
CUDA 3.2     260.19.26 
CUDA 3.1     256.40 
CUDA 3.0     195.36.15

4.解决方案

从驱动和运行时的版本对应关系来看,版本为384.81的驱动程序 对应的 运行时版本是9.0,也就是说我们在python中安装cudatoolkit和cudnn程序包版本9.2是过高了。

因为系统中依赖GPU驱动的程序比较多,一般出现这种情况,我们都是更改cudatoolkit和cudnn程序包的版本。

于是,先卸载python中安装cudatoolkit和cudnn程序包:pip uninstall cudnn ; pip uninstall cudatoolkit

然后安装对应版本的cudatoolkit和cudnn程序包:pip install cudatoolkit=9.0;pip install cudnn

5.为什么会出现这种情况呢:

一般出现这种情况是因为在python中安装tensorflow的gpu版本时,pip会检查tensorflow依赖的其他的包,如果依赖的包没有安装,则会先安装最新版本的依赖包。这时候tensorflow的gpu版本依赖cudatoolkit和cudnn程序包,pip就会安装最新版本的cudatoolkit和cudnn程序包,最终导致gpu驱动版本和cuda运行时版本不匹配。

到此这篇关于详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系的文章就介绍到这了,更多相关Tensorflow CUDA及CUDNN版本对应内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python中json.dumps()和json.dump()的区别小结

    Python中json.dumps()和json.dump()的区别小结

    在Python中,json.dumps()和json.dump()是两个常用的函数,本文主要介绍了Python中json.dumps()和json.dump()的区别小结,具有一定的参考价值,感兴趣的可以了解一下
    2024-02-02
  • Python图片处理之图片采样处理详解

    Python图片处理之图片采样处理详解

    这篇文章将详细为大家讲解图像采样处理,包括原理知识、代码实现和局部马赛克处理。文中的示例代码讲解详细,感兴趣的可以跟随小编一起动手试一试
    2022-02-02
  • 查看keras的默认backend实现方式

    查看keras的默认backend实现方式

    这篇文章主要介绍了查看keras的默认backend实现方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python读取并写入mat文件的方法

    python读取并写入mat文件的方法

    这篇文章主要介绍了python读取并写入mat文件的方法,文中给大家提到了python读取matlab写的mat文件问题以及解决办法 ,需要的朋友可以参考下
    2019-07-07
  • Python如何读取MySQL数据库表数据

    Python如何读取MySQL数据库表数据

    这篇文章主要为大家详细介绍了Python如何读取MySQL数据库表数据,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-03-03
  • python中yaml配置文件模块的使用详解

    python中yaml配置文件模块的使用详解

    本篇文章主要介绍了python中yaml配置文件模块的使用详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-04-04
  • Python序列操作之进阶篇

    Python序列操作之进阶篇

    序列sequence是python中最基本的数据结构,本文是Python序列操作的进阶篇,本文先对序列做一个简单的概括,之后将详细讲解下关于序列的操作方法。文中通过示例代码介绍的很详细,有需要的朋友们可以参考借鉴,下面来一起看看吧。
    2016-12-12
  • python如何利用paramiko执行服务器命令

    python如何利用paramiko执行服务器命令

    这篇文章主要介绍了python如何利用paramiko执行服务器命令,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-11-11
  • python类装饰器用法实例

    python类装饰器用法实例

    这篇文章主要介绍了python类装饰器用法,实例分析了Python类装饰器的相关使用方法,需要的朋友可以参考下
    2015-06-06
  • TensorFlow和Numpy矩阵操作中axis理解及axis=-1的解释

    TensorFlow和Numpy矩阵操作中axis理解及axis=-1的解释

    在调用numpy库中的concatenate()时,有遇到axis=-1/1/0的情况,下面这篇文章主要给大家介绍了关于TensorFlow和Numpy矩阵操作中axis理解及axis=-1解释的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-03-03

最新评论