python性能测试工具locust的使用

 更新时间:2020年12月28日 16:08:40   作者:三只松鼠  
这篇文章主要介绍了python性能测试工具locust的使用,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下

一、简介

  Locust 是一个易于使用,分布式,用户负载测试工具。它用于负载测试 web 站点(或其他系统),并计算出一个系统可以处理多少并发用户。在测试期间,一大群虚拟用户访问你的网站。每个测试用户的行为由您定义,集群过程由 web UI 实时监控。这将帮助您在让真正的用户进入之前进行测试并识别代码中的瓶颈。

  Locust 完全是基于事件的,因此在一台机器上支持数千个并发用户是可能的。与许多其他基于事件的应用程序不同,它不使用回调。相反它通过 gevent 使用轻量级协程。这允许您用 Python 编写非常有表现力的场景,而不用回调使代码复杂化。

二、安装

 用 pip 管理工具安装: 

pip3 install locust

检查是否安装成功,执行命令:locust --v

三、压测过程

1.编写脚本

      Locust 不同于 jmeter 可以用 GUI 来创建压测脚本。Locust 需要自己编写 python 脚本,压测负载脚本主要包含两个子类UserTask和WebsiteUser,分别继承TaskSet和Httplocust类,拥有这两个父类的公共属性和方法。

from locust import HttpLocust, TaskSet, task, between
import os,json

# 定义用户行为
class UserTask(TaskSet):
  def on_start(self):
    '''初始化数据,每个虚拟用户只执行一次'''
    self.client.post("/login",{"username":"test","password":"123456"})

  @task(2)
  def home_index(self):
    r = self.client.get("/sz/Home/DefaultHomeV2Request")
    assert json.loads(r.text)['Error'] == 0

  @task(1)
  def sale(self):
    self.client.get("/sz/Home/FlashSaleRequest")
    assert json.loads(r.text)['Error'] == 0

  def on_stop(self):
    '''销毁数据,每个虚拟用户只执行一次'''
    self.client.post("/SignOut",{"CustomerGuid":"c7d7e646-9ce2-499b-a22e-a3c98d4545fe"})

class WebsiteUser(HttpLocust):
  host = 'http://10.1.62.126'
  task_set = UserTask
  wait_time = between(3, 5)


if __name__ == "__main__":
  os.system('locust -f stress_test.py ')

locust 运行时:

  • on_start()  :每个并发用户在开始前各执行一次
  • on_stop():每个并发用户在结束后各执行一次
  • @task: 通过装饰器设置运行权重,比如上面代码中 执行任务 home_index 和 sale 的总请求为 2:1
  • assert:断言设置
  • wait_time :每个任务之间设置间隔时间,随机从3~5区间内取,单位是 s
  • locust -f:指定 .py 压测脚本路径

2. Locust 监控

 顺带提一下 locust web UI监控是基于 flask 框架,不指定 port 的话,默认地址:http://localhost:8089 

开始测试,Locust 提供一个简易的监控界面,可以看到 RPS、响应时间 和 部分曲线图

3.运行模式

 1.web UI 模式

locust -f stress_test.py --web-host 10.1.44.31 --web-port 8090

--web-host:指定 web UI IP,默认 localhost

--web-port:指定 web UI 端口,默认 8089

2. no web 模式

locust -f stress_test.py --no-web -c 100 -r 20 -t 120

--no-web:指定无 web UI模式

-c:起多少 locust 用户(等同于起多少 tcp 连接)

-r:多少时间内,把上述 -c 设置的虚拟用户全部启动

-t:脚本运行多少时间,单位s

在 --no-web 模式下的报告如下:

4.分布式进程

       Locust 是由 python 编写的,由于GIL的限制,单进程不能利用CPU多核的优势(实际测试结果也是一样,8核心的虚拟机,只有一核达到了95%以上的使用率,其余7核只围观,不出力)。所以单台机器上想要尽可能的压榨 CPU,只能开启多进程,一般有多少个核心启多少进程。

单台多进程:

 先启一个 master

locust -f /home/script/stress_test.py --web-host 10.1.62.223 --master

 再启 8 个 slave

locust -f /home/script/stress_test.py --slave

slave 节点启动后,在 locust 监控中能看到

多台多进程:

 多台机器搭建 Locust 分布式 和 单台搭建多进程差不多。只有一个区别,如果 slave 和 master 不在一台机器上, slave 需要指定 --master-host 参数:

更多功能使用请查看Locust官方文档,形成良好的习惯 :官方文档 

四、总结

  Locust 基于 python 脚本定制化压测,使用 python 语言来实现 参数化、关联参数、断言和一些复杂的压测场景非常方便。Locust 使用协程来构建tcp连接,本身单机并发能力强,但内部是由requests库的httpclient 发起网络请求,requests库功能挺全面,性能却很一般,好在 Locust 支持分布式,弥补了一定的性能缺陷。根据自己做的测试,同样几台客户机,jmeter搭建分布式测出的 qps 比 Locust分布式 高1/3。如果要提升 locust 单进程性能,可以将 httpclient 的实现方式从 requests 换成 geventhttpclient ,这个下一篇再讲述。

以上就是python性能测试工具locust的使用的详细内容,更多关于python性能测试工具locust的资料请关注脚本之家其它相关文章!

相关文章

  • python-docx文件定位读取过程(尝试替换)

    python-docx文件定位读取过程(尝试替换)

    今天小编就为大家分享一篇python-docx文件定位读取过程(尝试替换),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python pip命令清除Python包缓存文件问题

    Python pip命令清除Python包缓存文件问题

    这篇文章主要介绍了Python pip命令清除Python包缓存文件问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-03-03
  • python用socket实现协议TCP长连接框架

    python用socket实现协议TCP长连接框架

    大家好,本篇文章主要讲的是python用socket实现协议TCP长连接框架,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-02-02
  • 教你利用Selenium+python自动化来解决pip使用异常

    教你利用Selenium+python自动化来解决pip使用异常

    今天带大家来学习怎么利用Selenium+python自动化解决pip使用异常,文中介绍的非常详细,对正在学习python的小伙伴们有很大的帮助,需要的朋友可以参考下
    2021-05-05
  • OpenCV-Python实现图像平滑处理操作

    OpenCV-Python实现图像平滑处理操作

    图像平滑处理的噪声取值主要有6种方法,本文主要介绍了这6种方法的具体使用并配置实例方法,具有一定的参考价值,感兴趣的可以了解一下
    2021-06-06
  • Python全局变量global关键字详解

    Python全局变量global关键字详解

    这篇文章主要介绍了Python全局变量global关键字详解,需要的朋友可以参考下
    2021-04-04
  • Python求均值,方差,标准差的实例

    Python求均值,方差,标准差的实例

    今天小编就为大家分享一篇Python求均值,方差,标准差的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • Python开发之迭代器&生成器的实战案例分享

    Python开发之迭代器&生成器的实战案例分享

    在 Python 中,迭代器和生成器都是用来遍历数据集合的工具,可以按需逐个生成或返回数据,从而避免一次性加载整个数据集合所带来的性能问题和内存消耗问题。本文主要和大家分享几个贴近实际运维开发工作中的场景案例,希望对大家有所帮助
    2023-04-04
  • Python Socket传输文件示例

    Python Socket传输文件示例

    这篇文章主要介绍了Python Socket传输文件示例,发送端可以不停的发送新文件,接收端可以不停的接收新文件。有兴趣的可以了解一下。
    2017-01-01
  • python基础教程之udp端口扫描

    python基础教程之udp端口扫描

    开发一个程序,用于获取局域网中开启snmp服务的主机ip地址列表,并写入相应文件以便其它程序使用。下面是实现方法
    2014-02-02

最新评论