pytorch中index_select()的用法详解

 更新时间:2021年01月06日 16:07:17   作者:g_blink  
这篇文章主要介绍了pytorch中index_select()的用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

pytorch中index_select()的用法

index_select(input, dim, index)

功能:在指定的维度dim上选取数据,不如选取某些行,列

参数介绍

  • 第一个参数input是要索引查找的对象
  • 第二个参数dim是要查找的维度,因为通常情况下我们使用的都是二维张量,所以可以简单的记忆: 0代表行,1代表列
  • 第三个参数index是你要索引的序列,它是一个tensor对象

刚开始学习pytorch,遇到了index_select(),一开始不太明白几个参数的意思,后来查了一下资料,算是明白了一点。

a = torch.linspace(1, 12, steps=12).view(3, 4)
print(a)
b = torch.index_select(a, 0, torch.tensor([0, 2]))
print(b)
print(a.index_select(0, torch.tensor([0, 2])))
c = torch.index_select(a, 1, torch.tensor([1, 3]))
print(c)

先定义了一个tensor,这里用到了linspace和view方法。

第一个参数是索引的对象,第二个参数0表示按行索引,1表示按列进行索引,第三个参数是一个tensor,就是索引的序号,比如b里面tensor[0, 2]表示第0行和第2行,c里面tensor[1, 3]表示第1列和第3列。

输出结果如下:

tensor([[ 1.,  2.,  3.,  4.],
        [ 5.,  6.,  7.,  8.],
        [ 9., 10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  4.],
        [ 9., 10., 11., 12.]])
tensor([[ 1.,  2.,  3.,  4.],
        [ 9., 10., 11., 12.]])
tensor([[ 2.,  4.],
        [ 6.,  8.],
        [10., 12.]])

示例2 

import torch
 
x = torch.Tensor([[[1, 2, 3],
          [4, 5, 6]],
 
         [[9, 8, 7],
          [6, 5, 4]]])
print(x)
print(x.size())
index = torch.LongTensor([0, 0, 1])
print(torch.index_select(x, 0, index))
print(torch.index_select(x, 0, index).size())
print(torch.index_select(x, 1, index))
print(torch.index_select(x, 1, index).size())
print(torch.index_select(x, 2, index))
print(torch.index_select(x, 2, index).size())

input的张量形状为2×2×3,index为[0, 0, 1]的向量

分别从0、1、2三个维度来使用index_select()函数,并输出结果和形状,维度大于2就会报错因为input最大只有三个维度

输出:

tensor([[[1., 2., 3.],
         [4., 5., 6.]],
 
        [[9., 8., 7.],
         [6., 5., 4.]]])
torch.Size([2, 2, 3])
tensor([[[1., 2., 3.],
         [4., 5., 6.]],
 
        [[1., 2., 3.],
         [4., 5., 6.]],
 
        [[9., 8., 7.],
         [6., 5., 4.]]])
torch.Size([3, 2, 3])
tensor([[[1., 2., 3.],
         [1., 2., 3.],
         [4., 5., 6.]],
 
        [[9., 8., 7.],
         [9., 8., 7.],
         [6., 5., 4.]]])
torch.Size([2, 3, 3])
tensor([[[1., 1., 2.],
         [4., 4., 5.]],
 
        [[9., 9., 8.],
         [6., 6., 5.]]])
torch.Size([2, 2, 3])

对结果进行分析:

index是大小为3的向量,输入的张量形状为2×2×3

dim = 0时,输出的张量形状为3×2×3

dim = 1时,输出的张量形状为2×3×3

dim = 2时,输出的张量形状为2×2×3

注意输出张量维度的变化与index大小的关系,结合输出的张量与原始张量来分析index_select()函数的作用

到此这篇关于pytorch中index_select()的用法详解的文章就介绍到这了,更多相关pytorch index_select()内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家! 

相关文章

  • 一文详解如何使用Python批量拼接图片

    一文详解如何使用Python批量拼接图片

    这篇文章主要给大家介绍了关于如何使用Python批量拼接图片的相关资料,文中主要用的是PIL库,PIL库是一个具有强大图像处理能力的第三方库,不仅包含了丰富的像素、色彩操作功能,还可以用于图像归档和批量处理,需要的朋友可以参考下
    2023-05-05
  • django python 获取当天日期的方法

    django python 获取当天日期的方法

    这篇文章主要介绍了django python 获取当天日期,在Python中,你可以使用datetime模块来获取当前日期,本文结合实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2023-05-05
  • Python 导入文件过程图解

    Python 导入文件过程图解

    这篇文章主要介绍了Python 导入文件过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • Python爬虫爬取百度搜索内容代码实例

    Python爬虫爬取百度搜索内容代码实例

    这篇文章主要介绍了Python爬虫爬取百度搜索内容代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • python 用struct模块解决黏包问题

    python 用struct模块解决黏包问题

    这篇文章主要介绍了python 用struct模块解决黏包问题,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-11-11
  • 修复Python缩进错误的方法实现

    修复Python缩进错误的方法实现

    在Python中,缩进是非常重要的,因为它决定了代码块的层次结构,本文主要介绍了修复Python缩进错误的方法实现,具有一定的参考价值,感兴趣的可以了解一下
    2023-11-11
  • python字典值排序并取出前n个key值的方法

    python字典值排序并取出前n个key值的方法

    今天小编就为大家分享一篇python字典值排序并取出前n个key值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • YOLOv5在图片上显示统计出单一检测目标的个数实例代码

    YOLOv5在图片上显示统计出单一检测目标的个数实例代码

    各位读者首先要认识到的问题是,在YOLOv5中完成锚框计数是一件非常简单的工作,下面这篇文章主要给大家介绍了关于YOLOv5如何在图片上显示统计出单一检测目标的个数的相关资料,需要的朋友可以参考下
    2023-03-03
  • 使用python实现一个简单的图片爬虫

    使用python实现一个简单的图片爬虫

    在本文中,我们将学习如何使用Python创建一个简单的图片爬虫,我们将利用requests库来发送HTTP请求,BeautifulSoup库来解析HTML页面,以及os和shutil库来下载和保存图片,通过这个教程,你将学会如何爬取网页上的图片并保存到本地,需要的朋友可以参考下
    2024-02-02
  • Python中Array特性与应用实例深入探究

    Python中Array特性与应用实例深入探究

    这篇文章主要为大家介绍了Python中Array特性与应用实例深入探究,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01

最新评论