numpy数据类型dtype转换实现

 更新时间:2021年04月23日 14:15:35   作者:罗兵  
这篇文章主要介绍了numpy数据类型dtype转换实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

这篇文章我们玩玩numpy的数值数据类型转换

导入numpy

>>> import numpy as np

一、随便玩玩

生成一个浮点数组

>>> a = np.random.random(4)

看看信息

>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.dtype
dtype('float64')
>>> a.shape
(4,)

改变dtype,发现数组长度翻倍!

>>> a.dtype = 'float32'
>>> a
array([  3.65532693e+20,   1.43907535e+00,  -3.31994873e-25,
         1.75549972e+00,  -2.75686653e+14,   1.78122652e+00,
        -1.03207532e-19,   1.58760118e+00], dtype=float32)
>>> a.shape
(8,)

改变dtype,数组长度再次翻倍!

>>> a.dtype = 'float16'
>>> a
array([ -9.58442688e-05,   7.19000000e+02,   2.38159180e-01,
         1.92968750e+00,              nan,  -1.66034698e-03,
        -2.63427734e-01,   1.96875000e+00,  -1.07519531e+00,
        -1.19625000e+02,              nan,   1.97167969e+00,
        -1.60156250e-01,  -7.76290894e-03,   4.07226562e-01,
         1.94824219e+00], dtype=float16)
>>> a.shape
(16,)

改变dtype='float',发现默认就是float64,长度也变回最初的4

>>> a.dtype = 'float'
>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.shape
(4,)
>>> a.dtype
dtype('float64')

把a变为整数,观察其信息

>>> a.dtype = 'int64'
>>> a
array([4591476579734816328, 4602876970018897584, 4603803876586077261,
       4596827787908854048], dtype=int64)
>>> a.shape
(4,)

改变dtype,发现数组长度翻倍!

>>> a.dtype = 'int32'
>>> a
array([ 1637779016,  1069036447, -1764917584,  1071690807,  -679822259,
        1071906619, -1611419360,  1070282372])
>>> a.shape
(8,)

改变dtype,发现数组长度再次翻倍!

>>> a.dtype = 'int16'
>>> a
array([-31160,  24990,  13215,  16312,  32432, -26931, -19401,  16352,
       -17331, -10374,   -197,  16355, -20192, -24589,  13956,  16331], dtype=int16)
>>> a.shape
(16,)

改变dtype,发现数组长度再次翻倍!

>>> a.dtype = 'int8'
>>> a
array([  72, -122,  -98,   97,  -97,   51,  -72,   63,  -80,  126,  -51,
       -106,   55,  -76,  -32,   63,   77,  -68,  122,  -41,   59,   -1,
        -29,   63,   32,  -79,  -13,  -97, -124,   54,  -53,   63], dtype=int8)
>>> a.shape
(32,)

改变dtype,发现整数默认int32!

>>> a.dtype = 'int'
>>> a.dtype
dtype('int32')
>>> a
array([ 1637779016,  1069036447, -1764917584,  1071690807,  -679822259,
        1071906619, -1611419360,  1070282372])
>>> a.shape
(8,)

二、换一种玩法

很多时候我们用numpy从文本文件读取数据作为numpy的数组,默认的dtype是float64。
但是有些场合我们希望有些数据列作为整数。如果直接改dtype='int'的话,就会出错!原因如上,数组长度翻倍了!!!

下面的场景假设我们得到了导入的数据。我们的本意是希望它们是整数,但实际上是却是浮点数(float64)

>>> b = np.array([1., 2., 3., 4.])
>>> b.dtype
dtype('float64')

用 astype(int) 得到整数,并且不改变数组长度

>>> c = b.astype(int)
>>> c
array([1, 2, 3, 4])
>>> c.shape
(8,)
>>> c.dtype
dtype('int32')

如果直接改变b的dtype的话,b的长度翻倍了,这不是我们想要的(当然如果你想的话)

>>> b
array([ 1.,  2.,  3.,  4.])

>>> b.dtype = 'int'
>>> b.dtype
dtype('int32')
>>> b
array([         0, 1072693248,          0, 1073741824,          0,
       1074266112,          0, 1074790400])
>>> b.shape
(8,)

三、结论

numpy中的数据类型转换,不能直接改原数据的dtype!  只能用函数astype()。

到此这篇关于numpy数据类型dtype转换实现的文章就介绍到这了,更多相关numpy dtype转换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django前后端分离csrf token获取方式

    Django前后端分离csrf token获取方式

    这篇文章主要介绍了Django前后端分离csrf token获取方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • Pillow使用Image篇的使用

    Pillow使用Image篇的使用

    本文主要介绍了Pillow使用Image篇的使用,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • Python 安装教程以及快速入门

    Python 安装教程以及快速入门

    Python是一种简单易学的编程语言,适合初学者入门。本文将介绍Python的安装教程以及快速入门,帮助读者快速上手Python编程。
    2023-09-09
  • Python Tkinter对话框控件使用详解

    Python Tkinter对话框控件使用详解

    Tkinter中提供了三种对话框控件:文件选择对话框、颜色选择对话框和消息对话框。本文将具体为大家介绍一下这三种对话框的使用,需要的可以参考一下
    2022-01-01
  • Python基于matplotlib绘制栈式直方图的方法示例

    Python基于matplotlib绘制栈式直方图的方法示例

    这篇文章主要介绍了Python基于matplotlib绘制栈式直方图的方法,涉及Python使用matplotlib进行图形绘制的相关操作技巧,需要的朋友可以参考下
    2017-08-08
  • python爬虫模块URL管理器模块用法解析

    python爬虫模块URL管理器模块用法解析

    这篇文章主要介绍了python爬虫模块URL管理器模块用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python PyAutoGUI实现自动化任务应用场景示例

    Python PyAutoGUI实现自动化任务应用场景示例

    这篇文章主要为大家介绍了Python PyAutoGUI实现自动化任务应用场景示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • 解决Python下imread,imwrite不支持中文的问题

    解决Python下imread,imwrite不支持中文的问题

    今天小编就为大家分享一篇解决Python下imread,imwrite不支持中文的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • python实现复制整个目录的方法

    python实现复制整个目录的方法

    这篇文章主要介绍了python实现复制整个目录的方法,涉及Python中shutil模块的相关操作技巧,需要的朋友可以参考下
    2015-05-05
  • 详解Python中的字符串格式化

    详解Python中的字符串格式化

    这篇文章主要为大家介绍了Python中的字符串格式化,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12

最新评论