如何用Python绘制棒棒糖图表

 更新时间:2021年05月12日 11:39:54   作者:法纳斯特  
这篇文章主要介绍了如何用Python绘制棒棒糖图表,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下

大家好,我是小F~

条形图在数据可视化里,是一个经常被使用到的图表。

虽然很好用,也还是存在着缺陷呢。比如条形图条目太多时,会显得臃肿,不够直观。

棒棒糖图表则是对条形图的改进,以一种小清新的设计,清晰明了表达了我们的数据。

下面小F就给大家介绍一下,如何使用Python绘制棒棒糖图表。

使用到的是我国1949到2019年,历年的出生人口数据,数据来源国家统计局。

首先读取一下数据。

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
df = pd.read_csv('data.csv')
print(df)

结果如下。

数据集很简单,每行都只有一个年份和一个值。

先绘制一个带有每年数值的条形图。

# 绘制柱状图
plt.bar(df.Year, df.value)
plt.show()

两行代码,即可得到一张条形图图表,看起来确实是有点拥挤。

下面将最后一年,即2019年的数据区分出来。

给2019年的条形着色为黑色,其他年份为浅灰色。

并且在图表中添加散点图,可在条形图的顶部绘制圆形。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
plt.bar(df.Year, df.value, color=colors)
plt.scatter(df.Year, df.value, color=colors)
plt.show()

得到结果如下。

颜色已经修改成功,还需要调整一下条形图的宽度以及顶部圆圈的大小。

# width: 条形图宽度  s: 散点图圆圈大小
plt.bar(df.Year, df.value, color=colors, width=0.2)
plt.scatter(df.Year, df.value, color=colors, s=10)
plt.show()

结果如下。

比起先前的蓝色条形图图表,棒棒糖图表确实是好看了不少。

除了用条形图来绘制棒棒糖图表,还可以使用线条,这样整体的宽度会更加一致。

X将Year(年份)数据作为起点和终点,Y以-20和各年份数据作为起点和终点。

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
df = pd.read_csv('data.csv')
print(df)

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx])
plt.show()

得到结果如下。

可以使用参数标记在两端绘制圆,而不是只在顶部生成散点图。

然后可以通过更改y-limit参数来隐藏最底端的圆。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条, markersize设置标记点大小
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             markersize=3)

# 设置y轴最低值
plt.ylim(0,)
plt.show()

结果如下。

此外还可以调整lw、markersize参数,定义线条的粗细及标记的大小,甚至可以绘制两次线条以创建轮廓效果。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))
color = 'b'

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color='black',
             marker='o',
             lw=4,
             markersize=6)
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             markersize=4)

# 移除上边框、右边框
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

# 设置x、y轴范围
plt.xlim(1948, 2020)
plt.ylim(0,)

# 中文显示
plt.rcParams['font.sans-serif'] = ['Songti SC']

plt.title('中国历年出生人口数据(万)', loc='left', fontsize=16)
plt.text(2019, -220, '来源:国家统计局', ha='right')

# 2019年出生人口数(显示)
value_2019 = df[df['Year'] == 2019].value.values[0]
plt.text(2019, value_2019+80, value_2019, ha='center')

# 保存图片
plt.savefig('chart.png')

得到结果如下。

黑色不是特别好看,改个颜色看看。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
color = 'b'
colors = ['#E74C3C'] + ((len(df)-1)*['#F5B7B1'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             lw=4,
             markersize=6,
             markerfacecolor='#E74C3C')

# 移除上边框、右边框
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

# 设置x、y轴范围
plt.xlim(1948, 2020)
plt.ylim(0,)

# 中文显示
plt.rcParams['font.sans-serif'] = ['Songti SC']

plt.title('中国历年出生人口数据(万)', loc='left', fontsize=16)
plt.text(2019, -220, '来源:国家统计局', ha='right')

# 2019年出生人口数(显示)
value_2019 = df[df['Year'] == 2019].value.values[0]
plt.text(2019, value_2019+80, value_2019, ha='center')

# 保存图片
plt.savefig('chart.png')

得到结果如下。

源码地址:

链接:https://pan.baidu.com/s/1vUgjonTOvgN7rDPx_8RfUg  密码:i613

现在对于条形图,你就有了另外一个选择,即棒棒糖图表。

此外我们也能了解到目前中国的新出生人口数量是越来越少,据说2020年出生人口降幅或超一成,未来几年恐跌破1000万...

以上就是如何用Python绘制棒棒糖图表的详细内容,更多关于用Python绘制棒棒糖图表的资料请关注脚本之家其它相关文章!

相关文章

  • python如何实现单链表的反转

    python如何实现单链表的反转

    这篇文章主要介绍了python如何实现单链表的反转,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Pandas加速代码之避免使用for循环

    Pandas加速代码之避免使用for循环

    如果你使用Python和Pandas进行数据分析,循环是不可避免要使用的。这篇文章主要给大家介绍了关于Pandas加速代码之避免使用for循环的相关资料,需要的朋友可以参考下
    2021-05-05
  • Python 隐藏输入密码时屏幕回显的实例

    Python 隐藏输入密码时屏幕回显的实例

    今天小编就为大家分享一篇Python 隐藏输入密码时屏幕回显的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • python中xlwt模块的具体用法

    python中xlwt模块的具体用法

    本文主要介绍了python中xlwt模块的具体用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Python通过类的组合模拟街道红绿灯

    Python通过类的组合模拟街道红绿灯

    这篇文章主要介绍了Python通过类的组合模拟街道红绿灯,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • python中使用Celery容联云异步发送验证码功能

    python中使用Celery容联云异步发送验证码功能

    Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理,本文重点给大家介绍使用Celery容联云异步发送验证码功能,感兴趣的朋友一起看看吧
    2021-09-09
  • 浅析使用Python操作文件

    浅析使用Python操作文件

    文件操作对编程语言的重要性不用多说,如果数据不能持久保存,信息技术也就失去了意义。按照本人经验,IO也是蛮头疼的一件事,因为不会用得太多,所以总是记不住API,每次都要重新google就会打断思路,还不一定每次都快速得到正确的文章。
    2017-07-07
  • python实战之制作表情包游戏

    python实战之制作表情包游戏

    想知道如何制作表情包游戏吗?用Python就可以搞定!本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • Python入门教程(十八)Python的For循环

    Python入门教程(十八)Python的For循环

    这篇文章主要介绍了Python入门教程(十八)Python的For循环,Python是一门非常强大好用的语言,也有着易上手的特性,本文为入门教程,需要的朋友可以参考下
    2023-04-04
  • Python Web框架Flask中使用百度云存储BCS实例

    Python Web框架Flask中使用百度云存储BCS实例

    这篇文章主要介绍了Python Web框架Flask中使用百度云存储BCS实例,本文调用了百度云存储Python SDK中的相关类,需要的朋友可以参考下
    2015-02-02

最新评论