Pytorch中的backward()多个loss函数用法

 更新时间:2021年05月25日 08:37:07   作者:haoxue2011  
这篇文章主要介绍了Pytorch中的backward()多个loss函数用法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

Pytorch的backward()函数

假若有多个loss函数,如何进行反向传播和更新呢?

 x = torch.tensor(2.0, requires_grad=True)                                                    
 y = x**2                                                                                     
 z = x                                                                                        
# 反向传播
 y.backward()                                                                                 
 x.grad                                                                                       
 tensor(4.)
 z.backward()                                                                                 
 x.grad                                                                                       
 tensor(5.) ## 累加

补充:Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析

backward函数

官方定义:

torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None)

Computes the sum of gradients of given tensors w.r.t. graph leaves.The graph is differentiated using the chain rule. If any of tensors are non-scalar (i.e. their data has more than one element) and require gradient, the function additionally requires specifying grad_tensors. It should be a sequence of matching length, that contains gradient of the differentiated function w.r.t. corresponding tensors (None is an acceptable value for all tensors that don't need gradient tensors). This function accumulates gradients in the leaves - you might need to zero them before calling it.

翻译和解释:

参数tensors如果是标量,函数backward计算参数tensors对于给定图叶子节点的梯度( graph leaves,即为设置requires_grad=True的变量)。

参数tensors如果不是标量,需要另外指定参数grad_tensors,参数grad_tensors必须和参数tensors的长度相同。在这一种情况下,backward实际上实现的是代价函数(loss = torch.sum(tensors*grad_tensors); 注:torch中向量*向量实际上是点积,因此tensors和grad_tensors的维度必须一致 )关于叶子节点的梯度计算,而不是参数tensors对于给定图叶子节点的梯度。如果指定参数grad_tensors=torch.ones((size(tensors))),显而易见,代价函数关于叶子节点的梯度,也就等于参数tensors对于给定图叶子节点的梯度。

每次backward之前,需要注意叶子梯度节点是否清零,如果没有清零,第二次backward会累计上一次的梯度。

下面给出具体的例子:

import torch
x=torch.randn((3),dtype=torch.float32,requires_grad=True)
y = torch.randn((3),dtype=torch.float32,requires_grad=True)
z = torch.randn((3),dtype=torch.float32,requires_grad=True)
t = x + y
loss = t.dot(z)  #求向量的内积

在调用 backward 之前,可以先手动求一下导数,应该是:

用代码实现求导:

loss.backward(retain_graph=True)
print(z,x.grad,y.grad)  #预期打印出的结果都一样
print(t,z.grad)    #预期打印出的结果都一样
print(t.grad)    #在这个例子中,x,y,z就是叶子节点,而t不是,t的导数在backward的过程中求出来回传之后就会被释放,因而预期结果是None

结果和预期一致:

tensor([-2.6752, 0.2306, -0.8356], requires_grad=True) tensor([-2.6752, 0.2306, -0.8356]) tensor([-2.6752, 0.2306, -0.8356])

tensor([-1.1916, -0.0156, 0.8952], grad_fn=<AddBackward0>) tensor([-1.1916, -0.0156, 0.8952]) None

敲重点:

注意到前面函数的解释中,在参数tensors不是标量的情况下,tensor.backward(grad_tensors)实现的是代价函数(torch.sum(tensors*grad_tensors))关于叶子节点的导数。

在上面例子中,loss = t.dot(z),因此用t.backward(z),实现的就是loss对于所有叶子结点的求导,实际运算结果和预期吻合。

t.backward(z,retain_graph=True)
print(z,x.grad,y.grad)
print(t,z.grad)

运行结果如下:

tensor([-0.7830, 1.4468, 1.2440], requires_grad=True) tensor([-0.7830, 1.4468, 1.2440]) tensor([-0.7830, 1.4468, 1.2440])

tensor([-0.7145, -0.7598, 2.0756], grad_fn=<AddBackward0>) None

上面的结果中,出现了一个问题,虽然loss关于x和y的导数正确,但是z不再是叶子节点了。

问题1:

当使用t.backward(z,retain_graph=True)的时候, print(z.grad)结果是None,这意味着z不再是叶子节点,这是为什么呢?

另外一个尝试,loss = t.dot(z)=z.dot(t),但是如果用z.backward(t)替换t.backward(z,retain_graph=True),结果却不同。

z.backward(t)
print(z,x.grad,y.grad)
print(t,z.grad)

运行结果:

tensor([-1.0716, -1.3643, -0.0016], requires_grad=True) None None

tensor([-0.7324, 0.9763, -0.4036], grad_fn=<AddBackward0>) tensor([-0.7324, 0.9763, -0.4036])

问题2:

上面的结果中可以看到,使用z.backward(t),x和y都不再是叶子节点了,z仍然是叶子节点,且得到的loss相对于z的导数正确。

上述仿真出现的两个问题,我还不能解释,希望和大家交流。

问题1:

当使用t.backward(z,retain_graph=True)的时候, print(z.grad)结果是None,这意味着z不再是叶子节点,这是为什么呢?

问题2:

上面的结果中可以看到,使用z.backward(t),x和y都不再是叶子节点了,z仍然是叶子节点,且得到的loss相对于z的导数正确。

另外强调一下,每次backward之前,需要注意叶子梯度节点是否清零,如果没有清零,第二次backward会累计上一次的梯度。

简单的代码可以看出:

#测试1,:对比上两次单独执行backward,此处连续执行两次backward
t.backward(z,retain_graph=True)
print(z,x.grad,y.grad)
print(t,z.grad)
z.backward(t)
print(z,x.grad,y.grad)
print(t,z.grad)
# 结果x.grad,y.grad本应该是None,因为保留了第一次backward的结果而打印出上一次梯度的结果
tensor([-0.5590, -1.4094, -1.5367], requires_grad=True) tensor([-0.5590, -1.4094, -1.5367]) tensor([-0.5590, -1.4094, -1.5367])tensor([-1.7914,  0.8761, -0.3462], grad_fn=<AddBackward0>) Nonetensor([-0.5590, -1.4094, -1.5367], requires_grad=True) tensor([-0.5590, -1.4094, -1.5367]) tensor([-0.5590, -1.4094, -1.5367])tensor([-1.7914,  0.8761, -0.3462], grad_fn=<AddBackward0>) tensor([-1.7914,  0.8761, -0.3462])
#测试2,:连续执行两次backward,并且清零,可以验证第二次backward没有计算x和y的梯度
t.backward(z,retain_graph=True)
print(z,x.grad,y.grad)
print(t,z.grad)
x.grad.data.zero_()
y.grad.data.zero_()
z.backward(t)
print(z,x.grad,y.grad)
print(t,z.grad)
tensor([ 0.8671, 0.6503, -1.6643], requires_grad=True) tensor([ 0.8671, 0.6503, -1.6643]) tensor([ 0.8671, 0.6503, -1.6643])tensor([1.6231e+00, 1.3842e+00, 4.6492e-06], grad_fn=<AddBackward0>) Nonetensor([ 0.8671,  0.6503, -1.6643], requires_grad=True) tensor([0., 0., 0.]) tensor([0., 0., 0.])tensor([1.6231e+00, 1.3842e+00, 4.6492e-06], grad_fn=<AddBackward0>) tensor([1.6231e+00, 1.3842e+00, 4.6492e-06])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python+Delorean实现时间格式智能转换

    Python+Delorean实现时间格式智能转换

    DeLorean是一个Python的第三方模块,基于 pytz 和 dateutil 开发,用于处理Python中日期时间的格式转换。本文将详细讲讲DeLorean的使用,感兴趣的可以了解一下
    2022-04-04
  • python如何压缩新文件到已有ZIP文件

    python如何压缩新文件到已有ZIP文件

    这篇文章主要为大家详细介绍了python如何压缩新文件到已有ZIP文件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • Python处理文本数据的方法详解

    Python处理文本数据的方法详解

    学习Python时,它总能让人深刻体会到这款语言的魅力。今天小编为大家带来一个有趣的项目,用Python处理文本数据,一起来看看今天的问题吧
    2022-06-06
  • Python 单例设计模式用法实例分析

    Python 单例设计模式用法实例分析

    这篇文章主要介绍了Python 单例设计模式用法,结合实例形式分析了Python单例模式的具体定义与使用操作技巧,需要的朋友可以参考下
    2019-09-09
  • 利用Python实现端口扫描器的全过程

    利用Python实现端口扫描器的全过程

    这篇文章主要给大家介绍了关于如何利用Python实现端口扫描器的相关资料,用来检测目标服务器上有哪些端口开放,本文适用于有 Python和计算机网络语言基础的用户,需要的朋友可以参考下
    2021-08-08
  • 对python中数据集划分函数StratifiedShuffleSplit的使用详解

    对python中数据集划分函数StratifiedShuffleSplit的使用详解

    今天小编就为大家分享一篇对python中数据集划分函数StratifiedShuffleSplit的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 一文教你使用Python绘制丝滑的K线图

    一文教你使用Python绘制丝滑的K线图

    K线图是将各种股票某一时间单位内的开盘价,收盘价,最高价,最低价,通过绘图方式表现出来的一种图形,下面我们来看看如何使用Python实现丝滑绘制K线图吧
    2025-04-04
  • Python数组定义方法

    Python数组定义方法

    这篇文章主要介绍了Python数组定义方法,结合实例形式分析了Python一维数组与二维数组的定义方法与相关注意事项,需要的朋友可以参考下
    2016-04-04
  • Python基于滑动平均思想实现缺失数据填充的方法

    Python基于滑动平均思想实现缺失数据填充的方法

    今天小编就为大家分享一篇关于Python基于滑动平均思想实现缺失数据填充的方法,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-02-02
  • Python对文件和目录进行操作的方法(file对象/os/os.path/shutil 模块)

    Python对文件和目录进行操作的方法(file对象/os/os.path/shutil 模块)

    下面小编就为大家带来一篇Python对文件和目录进行操作的方法(file对象/os/os.path/shutil 模块)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05

最新评论