C++实现LeetCode(94.二叉树的中序遍历)

 更新时间:2021年07月21日 14:32:33   作者:Grandyang  
这篇文章主要介绍了C++实现LeetCode(94.二叉树的中序遍历),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 94. Binary Tree Inorder Traversal 二叉树的中序遍历

Given a binary tree, return the inorder traversal of its nodes' values.

Example:

Input: [1,null,2,3]
1
\
2
/
3

Output: [1,3,2]

Follow up: Recursive solution is trivial, could you do it iteratively?

二叉树的中序遍历顺序为左-根-右,可以有递归和非递归来解,其中非递归解法又分为两种,一种是使用栈来接,另一种不需要使用栈。我们先来看递归方法,十分直接,对左子结点调用递归函数,根节点访问值,右子节点再调用递归函数,代码如下:

解法一:

class Solution {
public:
    vector<int> inorderTraversal(TreeNode *root) {
        vector<int> res;
        inorder(root, res);
        return res;
    }
    void inorder(TreeNode *root, vector<int> &res) {
        if (!root) return;
        if (root->left) inorder(root->left, res);
        res.push_back(root->val);
        if (root->right) inorder(root->right, res);
    }
};

下面再来看非递归使用栈的解法,也是符合本题要求使用的解法之一,需要用栈来做,思路是从根节点开始,先将根节点压入栈,然后再将其所有左子结点压入栈,然后取出栈顶节点,保存节点值,再将当前指针移到其右子节点上,若存在右子节点,则在下次循环时又可将其所有左子结点压入栈中。这样就保证了访问顺序为左-根-右,代码如下:

解法二: 

// Non-recursion
class Solution {
public:
    vector<int> inorderTraversal(TreeNode *root) {
        vector<int> res;
        stack<TreeNode*> s;
        TreeNode *p = root;
        while (p || !s.empty()) {
            while (p) {
                s.push(p);
                p = p->left;
            }
            p = s.top(); s.pop();
            res.push_back(p->val);
            p = p->right;
        }
        return res;
    }
};

下面这种解法跟 Binary Tree Preorder Traversal 中的解法二几乎一样,就是把结点值加入结果 res 的步骤从 if 中移动到了 else 中,因为中序遍历的顺序是左-根-右,参见代码如下:

解法三:

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        stack<TreeNode*> s;
        TreeNode *p = root;
        while (!s.empty() || p) {
            if (p) {
                s.push(p);
                p = p->left;
            } else {
                p = s.top(); s.pop();
                res.push_back(p->val);
                p = p->right;
            }
        }
        return res;
    }
};

下面来看另一种很巧妙的解法,这种方法不需要使用栈,所以空间复杂度为常量,这种非递归不用栈的遍历方法有个专门的名字,叫 Morris Traversal,在介绍这种方法之前,先来引入一种新型树,叫 Threaded binary tree,这个还不太好翻译,第一眼看上去以为是叫线程二叉树,但是感觉好像又跟线程没啥关系,后来看到网上有人翻译为螺纹二叉树,但博主认为这翻译也不太敢直视,很容易让人联想到为计划生育做出突出贡献的某世界著名品牌,后经热心网友提醒,应该叫做线索二叉树。先来看看维基百科上关于它的英文定义:

A binary tree is threaded by making all right child pointers that would normally be null point to the inorder successor of the node (if it exists), and all left child pointers that would normally be null point to the inorder predecessor of the node.

就是说线索二叉树实际上是把所有原本为空的右子节点指向了中序遍历顺序之后的那个节点,把所有原本为空的左子节点都指向了中序遍历之前的那个节点。那么这道题跟这个线索二叉树又有啥关系呢?由于既不能用递归,又不能用栈,那如何保证访问顺序是中序遍历的左-根-右呢。原来需要构建一个线索二叉树,需要将所有为空的右子节点指向中序遍历的下一个节点,这样中序遍历完左子结点后,就能顺利的回到其根节点继续遍历了。具体算法如下:

1. 初始化指针 cur 指向 root

2. 当 cur 不为空时

  - 如果 cur 没有左子结点

      a) 打印出 cur 的值

    b) 将 cur 指针指向其右子节点

  - 反之

     将 pre 指针指向 cur 的左子树中的最右子节点 

     * 若 pre 不存在右子节点

          a) 将其右子节点指回 cur

        b) cur 指向其左子节点

     * 反之

      a) 将 pre 的右子节点置空

      b) 打印 cur 的值

      c) 将 cur 指针指向其右子节点

解法四:

class Solution {
public:
    vector<int> inorderTraversal(TreeNode *root) {
        vector<int> res;
        if (!root) return res;
        TreeNode *cur, *pre;
        cur = root;
        while (cur) {
            if (!cur->left) {
                res.push_back(cur->val);
                cur = cur->right;
            } else {
                pre = cur->left;
                while (pre->right && pre->right != cur) pre = pre->right;
                if (!pre->right) {
                    pre->right = cur;
                    cur = cur->left;
                } else {
                    pre->right = NULL;
                    res.push_back(cur->val);
                    cur = cur->right;
                }
            }
        }
        return res;
    }
};

其实 Morris 遍历不仅仅对中序遍历有用,对先序和后序同样有用。所以对二叉树的三种常见遍历顺序(先序,中序,后序)就有三种解法(递归,非递归,Morris 遍历),总共有九段代码呀,熟练掌握这九种写法才算初步掌握了树的遍历挖

到此这篇关于C++实现LeetCode(94.二叉树的中序遍历)的文章就介绍到这了,更多相关C++实现二叉树的中序遍历内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C++实现LeetCode(34.在有序数组中查找元素的第一个和最后一个位置)

    C++实现LeetCode(34.在有序数组中查找元素的第一个和最后一个位置)

    这篇文章主要介绍了C++实现LeetCode(34.在有序数组中查找元素的第一个和最后一个位置),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07
  • C++函数指针详解

    C++函数指针详解

    这篇文章主要介绍了C++函数指针详解,通过文字描述C++函数指针基础概念,内涵详细的代码实现和解析,希望对你能够有所帮助
    2021-06-06
  • C语言数据结构之简易计算器

    C语言数据结构之简易计算器

    这篇文章主要为大家详细介绍了C语言数据结构之简易计算器,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-11-11
  • C++使用GDAL库实现Tiff文件的读取

    C++使用GDAL库实现Tiff文件的读取

    这篇文章主要为大家详细介绍了C++使用GDAL库实现Tiff文件的读取的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-03-03
  • Prim(普里姆)算法求最小生成树的思想及C语言实例讲解

    Prim(普里姆)算法求最小生成树的思想及C语言实例讲解

    Prim算法能够在带权的图中搜索出最小生成树,这也是各大ACM和面试及考研题目中的热点,下面我们就来详细看一下Prim(普里姆)算法求最小生成树的思想及C语言实例讲解
    2016-06-06
  • C++ 使用new与delete需注意的原则

    C++ 使用new与delete需注意的原则

    这篇文章主要介绍了C++ 使用new与delete需注意的原则,帮助大家更好的理解和学习c++,感兴趣的朋友可以了解下
    2020-08-08
  • C++多文件变量解析

    C++多文件变量解析

    大家注意不要在头文件中定义变量,在头文件中声明变量。定义放在对应的源文件中。其他地方只能用extern声明
    2013-10-10
  • C++笔记之std::future的用法小结

    C++笔记之std::future的用法小结

    std::future通常由某个Provider创建,与std::async一起使用,本文主要介绍了C++笔记之std::future的用法小结,具有一定的参考价值,感兴趣的可以了解一下
    2023-10-10
  • VisualStudio2022 cmake配置opencv开发环境

    VisualStudio2022 cmake配置opencv开发环境

    本文主要介绍了VisualStudio2022 cmake配置opencv开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-08-08
  • C++中typeid实现原理详解

    C++中typeid实现原理详解

    这篇文章主要给大家介绍了关于C++中typeid实现原理的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11

最新评论