python之tensorflow手把手实例讲解猫狗识别实现

 更新时间:2021年09月22日 16:03:07   作者:鑫xing  
要说到深度学习图像分类的经典案例之一,那就是猫狗大战了。猫和狗在外观上的差别还是挺明显的,无论是体型、四肢、脸庞和毛发等等, 都是能通过肉眼很容易区分的。那么如何让机器来识别猫和狗呢?网上已经有不少人写过这案例了,我也来尝试下练练手。

作为tensorflow初学的大三学生,本次课程作业的使用猫狗数据集做一个二分类模型。

一,猫狗数据集数目构成

train cats:1000 ,dogs:1000
test cats: 500,dogs:500
validation cats:500,dogs:500

二,数据导入

train_dir = 'Data/train'
test_dir = 'Data/test'
validation_dir = 'Data/validation'
train_datagen = ImageDataGenerator(rescale=1/255,
                                   rotation_range=10,
                                   width_shift_range=0.2,  #图片水平偏移的角度
                                   height_shift_range=0.2,  #图片数值偏移的角度
                                   shear_range=0.2,  #剪切强度 
                                   zoom_range=0.2,   #随机缩放的幅度
                                   horizontal_flip=True,   #是否进行随机水平翻转
#                                    fill_mode='nearest'
                                  )
train_generator = train_datagen.flow_from_directory(train_dir,
                 (224,224),batch_size=1,class_mode='binary',shuffle=False)
test_datagen = ImageDataGenerator(rescale=1/255)
test_generator = test_datagen.flow_from_directory(test_dir,
                 (224,224),batch_size=1,class_mode='binary',shuffle=True)
validation_datagen = ImageDataGenerator(rescale=1/255)
validation_generator = validation_datagen.flow_from_directory(
                validation_dir,(224,224),batch_size=1,class_mode='binary')
print(train_datagen)
print(test_datagen)
print(train_datagen)

三,数据集构建

我这里是将ImageDataGenerator类里的数据提取出来,将数据与标签分别存放在两个列表,后面在转为np.array,也可以使用model.fit_generator,我将数据放在内存为了后续调参数时模型训练能更快读取到数据,不用每次训练一整轮都去读一次数据(应该是这样的…我是这样理解…)
注意我这里的数据集构建后,三种数据都是存放在内存中的,我电脑内存是16g的可以存放下。

train_data=[]
train_labels=[]
a=0
for data_train, labels_train in train_generator:
    train_data.append(data_train)
    train_labels.append(labels_train)
    a=a+1
    if a>1999:
        break
x_train=np.array(train_data)
y_train=np.array(train_labels)
x_train=x_train.reshape(2000,224,224,3)
test_data=[]
test_labels=[]
a=0
for data_test, labels_test in test_generator:
    test_data.append(data_test)
    test_labels.append(labels_test)
    a=a+1
    if a>999:
        break
x_test=np.array(test_data)
y_test=np.array(test_labels)
x_test=x_test.reshape(1000,224,224,3)
validation_data=[]
validation_labels=[]
a=0
for data_validation, labels_validation in validation_generator:
    validation_data.append(data_validation)
    validation_labels.append(labels_validation)
    a=a+1
    if a>999:
        break
x_validation=np.array(validation_data)
y_validation=np.array(validation_labels)
x_validation=x_validation.reshape(1000,224,224,3)

四,模型搭建

model1 = tf.keras.models.Sequential([
    # 第一层卷积,卷积核为,共16个,输入为150*150*1
    tf.keras.layers.Conv2D(16,(3,3),activation='relu',padding='same',input_shape=(224,224,3)),
    tf.keras.layers.MaxPooling2D((2,2)),
    
    # 第二层卷积,卷积核为3*3,共32个,
    tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same'),
    tf.keras.layers.MaxPooling2D((2,2)),
    
    # 第三层卷积,卷积核为3*3,共64个,
    tf.keras.layers.Conv2D(64,(3,3),activation='relu',padding='same'),
    tf.keras.layers.MaxPooling2D((2,2)),
    
    # 数据铺平
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64,activation='relu'),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(1,activation='sigmoid')
])
print(model1.summary())

模型summary:

在这里插入图片描述

五,模型训练

model1.compile(optimize=tf.keras.optimizers.SGD(0.00001),
             loss=tf.keras.losses.binary_crossentropy,
             metrics=['acc'])
history1=model1.fit(x_train,y_train,
# 					validation_split=(0~1)   选择一定的比例用于验证集,可被validation_data覆盖
                  validation_data=(x_validation,y_validation),
                  batch_size=10,
                  shuffle=True,
                  epochs=10)
model1.save('cats_and_dogs_plain1.h5')
print(history1)

在这里插入图片描述

plt.plot(history1.epoch,history1.history.get('acc'),label='acc')
plt.plot(history1.epoch,history1.history.get('val_acc'),label='val_acc')
plt.title('正确率')
plt.legend()

在这里插入图片描述

可以看到我们的模型泛化能力还是有点差,测试集的acc能达到0.85以上,验证集却在0.65~0.70之前跳动。

六,模型测试

model1.evaluate(x_validation,y_validation)

在这里插入图片描述

最后我们的模型在测试集上的正确率为0.67,可以说还不够好,有点过拟合,可能是训练数据不够多,后续可以数据增广或者从验证集、测试集中调取一部分数据用于训练模型,可能效果好一些。

到此这篇关于python之tensorflow手把手实例讲解猫狗识别实现的文章就介绍到这了,更多相关python tensorflow 猫狗识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python 中的嵌套字典推导的使用及优势

    Python 中的嵌套字典推导的使用及优势

    Python 字典推导是一个强大的工具,允许您从现有的字典创建新的字典,这篇文章主要介绍了Python中的嵌套字典推导,将探索 Python 嵌套字典推导、它的使用以及在 Python 中使用它的优势,需要的朋友可以参考下
    2023-05-05
  • python检查字符串是否是正确ISBN的方法

    python检查字符串是否是正确ISBN的方法

    这篇文章主要介绍了python检查字符串是否是正确ISBN的方法,涉及Python针对字符串的相关操作技巧,需要的朋友可以参考下
    2015-07-07
  • Python接单的过程记录分享

    Python接单的过程记录分享

    这篇文章主要介绍了Python接单的过程记录分享,需要的朋友可以参考下
    2021-04-04
  • python和anaconda区别以及先后安装的问题详解

    python和anaconda区别以及先后安装的问题详解

    Anaconda(开源的Python包管理器)是一个python发行版,包含了conda、Python等180多个科学包及其依赖项,下面这篇文章主要给大家介绍了关于python和anaconda区别以及先后安装问题的相关资料,需要的朋友可以参考下
    2022-05-05
  • python中关于range()函数反向遍历的几种表达

    python中关于range()函数反向遍历的几种表达

    这篇文章主要介绍了python中关于range()函数反向遍历的几种表达,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • python实现对excel表中的某列数据进行排序的代码示例

    python实现对excel表中的某列数据进行排序的代码示例

    这篇文章主要给大家介绍了如何使用python实现对excel表中的某列数据进行排序,文中有相关的代码示例供大家参考,具有一定的参考价值,需要的朋友可以参考下
    2023-11-11
  • Python函数中的不定长参数相关知识总结

    Python函数中的不定长参数相关知识总结

    今天给大家带来的是关于Python函数的相关知识,文章围绕着Python不定长参数展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • 详解Python 切片语法

    详解Python 切片语法

    Python的切片是特别常用的功能,主要用于对列表的元素取值。这篇文章主要介绍了详解Python 切片语法,需要的朋友可以参考下
    2019-06-06
  • python 实现两个线程交替执行

    python 实现两个线程交替执行

    这篇文章主要介绍了python 实现两个线程交替执行,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • pytorch中的优化器optimizer.param_groups用法

    pytorch中的优化器optimizer.param_groups用法

    这篇文章主要介绍了pytorch中的优化器optimizer.param_groups用法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05

最新评论