Python K-means实现简单图像聚类的示例代码

 更新时间:2021年10月21日 11:27:50   作者:xiongxyowo  
本文主要介绍了Python K-means实现简单图像聚类的示例代码,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

这里直接给出第一个版本的直接实现:

import os
import numpy as np
from sklearn.cluster import KMeans
import cv2
from imutils import build_montages
import matplotlib.image as imgplt

image_path = []
all_images = []
images = os.listdir('./images')

for image_name in images:
    image_path.append('./images/' + image_name)
for path in image_path:
    image = imgplt.imread(path)
    image = image.reshape(-1, )
    all_images.append(image)

clt = KMeans(n_clusters=2)
clt.fit(all_images)
labelIDs = np.unique(clt.labels_)

for labelID in labelIDs:
    idxs = np.where(clt.labels_ == labelID)[0]
    idxs = np.random.choice(idxs, size=min(25, len(idxs)),
		replace=False)
    show_box = []
    for i in idxs:
        image = cv2.imread(image_path[i])
        image = cv2.resize(image, (96, 96))
        show_box.append(image)
    montage = build_montages(show_box, (96, 96), (5, 5))[0]

    title = "Type {}".format(labelID)
    cv2.imshow(title, montage)
    cv2.waitKey(0)

主要需要注意的问题是对K-Means原理的理解。K-means做的是对向量的聚类,也就是说,假设要处理的是224×224×3的RGB图像,那么就得先将其转为1维的向量。在上面的做法里,我们是直接对其展平:

image = image.reshape(-1, )

那么这么做的缺陷也是十分明显的。例如,对于两张一模一样的图像,我们将前者向左平移一个像素。这么做下来后两张图像在感官上几乎没有任何区别,但由于整体平移会导致两者的图像矩阵逐像素比较的结果差异巨大。以橘子汽车聚类为例,实验结果如下:

在这里插入图片描述

在这里插入图片描述

可以看到结果是比较差的。因此,我们进行改进,利用ResNet-50进行图像特征的提取(embedding),在特征的基础上聚类而非直接在像素上聚类,代码如下:

import os
import numpy as np
from sklearn.cluster import KMeans
import cv2
from imutils import build_montages
import torch.nn as nn
import torchvision.models as models
from PIL import Image
from torchvision import transforms

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        resnet50 = models.resnet50(pretrained=True)
        self.resnet = nn.Sequential(resnet50.conv1,
                                    resnet50.bn1,
                                    resnet50.relu,
                                    resnet50.maxpool,
                                    resnet50.layer1,
                                    resnet50.layer2,
                                    resnet50.layer3,
                                    resnet50.layer4)

    def forward(self, x):
        x = self.resnet(x)
        return x

net = Net().eval()

image_path = []
all_images = []
images = os.listdir('./images')

for image_name in images:
    image_path.append('./images/' + image_name)
for path in image_path:
    image = Image.open(path).convert('RGB')
    image = transforms.Resize([224,244])(image)
    image = transforms.ToTensor()(image)
    image = image.unsqueeze(0)
    image = net(image)
    image = image.reshape(-1, )
    all_images.append(image.detach().numpy())

clt = KMeans(n_clusters=2)
clt.fit(all_images)
labelIDs = np.unique(clt.labels_)

for labelID in labelIDs:
	idxs = np.where(clt.labels_ == labelID)[0]
	idxs = np.random.choice(idxs, size=min(25, len(idxs)),
		replace=False)
	show_box = []
	for i in idxs:
		image = cv2.imread(image_path[i])
		image = cv2.resize(image, (96, 96))
		show_box.append(image)
	montage = build_montages(show_box, (96, 96), (5, 5))[0]

	title = "Type {}".format(labelID)
	cv2.imshow(title, montage)
	cv2.waitKey(0)

可以发现结果明显改善:

在这里插入图片描述

在这里插入图片描述

到此这篇关于Python K-means实现简单图像聚类的示例代码的文章就介绍到这了,更多相关Python K-means图像聚类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Pyecharts 动态地图 geo()和map()的安装与用法详解

    Pyecharts 动态地图 geo()和map()的安装与用法详解

    这篇文章主要介绍了Pyecharts 动态地图 geo()和map()的安装与用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • Python多线程获取返回值代码实例

    Python多线程获取返回值代码实例

    这篇文章主要介绍了Python多线程获取返回值代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • python scp 批量同步文件的实现方法

    python scp 批量同步文件的实现方法

    今天小编就为大家分享一篇python scp 批量同步文件的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 深入了解Python中的变量

    深入了解Python中的变量

    这篇文章主要为大家介绍了Python的变量,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • python绘图demo实现流程介绍

    python绘图demo实现流程介绍

    这篇文章主要介绍了python绘图demo实现流程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2022-11-11
  • 对Python 除法负数取商的取整方式详解

    对Python 除法负数取商的取整方式详解

    今天小编就为大家分享一篇对Python 除法负数取商的取整方式详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python基于staticmethod装饰器标示静态方法

    Python基于staticmethod装饰器标示静态方法

    这篇文章主要介绍了Python基于staticmethod装饰器标示静态方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10
  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    这篇文章主要介绍了python中pandas.DataFrame的简单操作方法,其中包括创建、索引、增添与删除等的相关资料,文中介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-03-03
  • 利用Python进行数据可视化的实例代码

    利用Python进行数据可视化的实例代码

    数据可视化和数据挖掘都是探索数据和分析数据的一种手段,下面这篇文章主要给大家介绍了关于如何利用Python进行数据可视化的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2021-09-09
  • Python实现对一个函数应用多个装饰器的方法示例

    Python实现对一个函数应用多个装饰器的方法示例

    这篇文章主要介绍了Python实现对一个函数应用多个装饰器的方法,结合实例形式分析了Python编程中一个函数使用多个装饰器的简单操作技巧,需要的朋友可以参考下
    2018-02-02

最新评论