python机器学习Sklearn实战adaboost算法示例详解

 更新时间:2021年11月27日 10:19:43   作者:Grateful_Dead424  
这篇文章主要为大家介绍了python机器学习Sklearn实战adaboost算法的示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪

pandas批量处理体测成绩

import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
data = pd.read_excel("/Users/zhucan/Desktop/18级高一体测成绩汇总.xls")
cond = data["班级"] != "班级"
data = data[cond]
 
data.fillna(0,inplace=True)
data.isnull().any()   #没有空数据了

结果:

班级       False

性别       False

姓名       False

1000米    False

50米      False

跳远       False

体前屈      False

引体       False

肺活量      False

身高       False

体重       False

dtype: bool

data.head()

#1000米成绩有string 有int
def convert(x):
    if isinstance(x,str):
        minute,second = x.split("'")
        int(minute)
        minute = int(minute)
        second = int(second)
        return minute + second/100.0
    else:
        return x
data["1000米"] = data["1000米"].map(convert)

score = pd.read_excel("/Users/zhucan/Desktop/体侧成绩评分表.xls",header=[0,1])
score

def convert(item):
    m,s = item.strip('"').split("'")
    m,s =int(m),int(s)
    return m+s/100.0
score.iloc[:,-4] = score.iloc[:,-4].map(convert) 
def convert(item):
    m,s = item.strip('"').split("'")
    m,s =int(m),int(s)
    return m+s/100.0    
score.iloc[:,-2] = score.iloc[:,-2].map(convert)
score

data.columns = ['班级', '性别', '姓名', '男1000', '男50米跑', '跳远', '体前屈', '引体', '肺活量', '身高', '体重']
data["男50米跑"] = data["男50米跑"].astype(np.float)
for col in ["男1000","男50米跑"]:
    #获取成绩的标准
    s = score[col]
    def convert(x):
        for i in range(len(s)):
            if x<=s["成绩"].iloc[0]:
                if x == 0:
                    return 0 #没有参加这个项目
                return 100
            elif x>s["成绩"].iloc[-1]:
                return 0  #跑的太慢
            elif (x>s["成绩"].iloc[i-1]) and (x<=s["成绩"].iloc[i]):
                return s["分数"].iloc[i]
    data[col + "成绩"] = data[col].map(convert)

for col in ['跳远', '体前屈', '引体', '肺活量']:
    s = score["男"+col]
    def convert(x):
        for i in range(len(s)):
            if x>s["成绩"].iloc[i]:
                return s["分数"].iloc[i]
        return 0
    data[col+"成绩"] = data[col].map(convert)

data.columns

 结果:

Index(['班级', '性别', '姓名', '男1000', '男50米跑', '跳远', '体前屈', '引体', '肺活量', '身高',
       '体重', '男1000成绩', '男50米跑成绩', '跳远成绩', '体前屈成绩', '引体成绩', '肺活量成绩'],
      dtype='object')
#根据索引的顺序,去data取值
cols = ['班级', '性别', '姓名', '男1000','男1000成绩','男50米跑','男50米跑成绩','跳远','跳远成绩','体前屈','体前屈成绩','引体','引体成绩', '肺活量','肺活量成绩','身高','体重']
data[cols]

#计算BMI
data["BMI"] = data["体重"]/data["身高"]
def convert(x):
    if x>100:
        return x/100
    else:
        return x
data["身高"] = data["身高"].map(convert)
data["BMI"] = data["体重"]/(data["身高"])**2
def convert_bmi(x):
    if x >= 26.4:
        return 60
    elif (x <= 16.4) or (x > 23.3 and x <= 26.3):
        return 80
    elif x >= 16.5 and x <= 23.2:
        return 100
    else:
        return 0
data["BMI_score"] = data["BMI"].map(convert_bmi)
#统计分析
data["BMI_score"].value_counts().plot(kind = "pie",autopct = "%0.2f%%")
#统计分析
data["BMI_score"].value_counts().plot(kind = "bar")

data.groupby(["男1000成绩"])["BMI_score"].count().plot(kind = "bar")

adaboost

 

 值

越大,特征越明显,越被容易分开;越后面的学习器,权重越大

梯度提升树没有修改原来的数据,使用的是残差,最终结果就是最后一棵树

上面的图不是GBDT

Boosting与Bagging模型相比,Boosting可以同时降低偏差和方差,Bagging只能降低模型的方差。在实际应用中,Boosting算法也还是存在明显的高方差问题,也就是过拟合。 

import numpy as np
y = np.array([0,1]*5)
y_ = np.array([0,0,0,0,0,0,0,1,0,1])
w = 0.1*(y != y_).sum()
round(w,1)

结果:

0.3

0.5*np.log((1-0.3)/0.3)
round((0.5*np.log((1-0.3)/0.3)),2)

 结果:

0.42

adaboost原理案例举例

from sklearn.ensemble import AdaBoostClassifier
from sklearn import tree
import matplotlib.pyplot as plt
X = np.arange(10).reshape(-1,1)
y = np.array([1,1,1,-1,-1,-1,1,1,1,-1])
ada = AdaBoostClassifier(n_estimators=3)
ada.fit(X,y)
plt.figure(figsize = (9,6))
_ = tree.plot_tree(ada[0])

y_ = ada[0].predict(X),4
y_

结果:

array([ 1,  1,  1, -1, -1, -1, -1, -1, -1, -1])
#误差率
e1 = np.round(0.1*(y != y_).sum(),4)
e1

结果:

0.3

#计算第一棵树权重
#随机森林中每棵树的权重是一样的
#adaboost提升树中每棵树的权重不同
a1 = np.round(1/2*np.log((1-e1)/e1),4)
a1

结果:

0.4236

#样本预测准确:更新的权重
w2 = 0.1*np.e**(-a1*y*y_)
w2 = w2/w2.sum()
np.round(w2,4)

结果:

array([0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.1667, 0.1667,
       0.1667, 0.0714])
#样本预测准确:更新的权重
w2 = 0.1*np.e**(-a1*y*y_)
w2 = w2/w2.sum()
np.round(w2,4)

结果:

array([0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.0714, 0.1667, 0.1667,
       0.1667, 0.0714])

从上述第一轮的整个迭代过程可以看出:被误分类样本的权值之和影响误差率,误差率影响基本分类器在最终分类器中所占的权重

分类函数 f1(x)= a1*G1(x)= 0.4236G1(x)

plt.figure(figsize = (9,6))
_ = tree.plot_tree(ada[1])

e2 = 0.0714*3
e2

结果:

0.2142

a2 = np.round(1/2*np.log((1-e2)/e2),4)
a2

 结果:

0.6499

y_ = ada[1].predict(X)
#样本预测准确:更新的权重
w3 = w2*np.e**(-a2*y*y_)
w3 = w3/w3.sum()
np.round(w3,4)

结果:

array([0.0454, 0.0454, 0.0454, 0.1667, 0.1667, 0.1667, 0.106 , 0.106 ,
       0.106 , 0.0454])
plt.figure(figsize = (9,6))
_ = tree.plot_tree(ada[2])

树划分按照gini系数;结果和按照误差率是一致的~ 

y_ = ada[2].predict(X)
e3 = (w3*(y_ != y)).sum()
a3 = 1/2*np.log((1-e3)/e3)
a3
#样本预测准确:更新的权重
w4 = w3*np.e**(-a3*y*y_)
w4 = w4/w4.sum()
np.round(w4,4)

结果:

array([0.125 , 0.125 , 0.125 , 0.1019, 0.1019, 0.1019, 0.0648, 0.0648,
       0.0648, 0.125 ])
display(a1,a2,a3)

 结果:

0.4236

0.6498960745553556

0.7521752700597043

弱分类器合并成强分类器

综上,将上面计算得到的a1、a2、a3各值代入G(x)中

G(x) = sign[f3(x)] = sign[ a1 * G1(x) + a2 * G2(x) + a3 * G3(x) ]

得到最终的分类器为:

G(x) = sign[f3(x)] = sign[ 0.4236G1(x) + 0.6496G2(x)+0.7514G3(x) ]

ada.predict(X)

结果:

array([ 1,  1,  1, -1, -1, -1,  1,  1,  1, -1])
y_predict = a1*ada[0].predict(X) +  a2*ada[1].predict(X) +a3*ada[2].predict(X)
y_predict
np.sign(y_predict).astype(np.int)
array([ 1,  1,  1, -1, -1, -1,  1,  1,  1, -1])

以上就是python机器学习Sklearn实战adaboost算法示例详解的详细内容,更多关于机器学习Sklearn实战adaboost算法的资料请关注脚本之家其它相关文章!

相关文章

  • Python识别验证码的实现示例

    Python识别验证码的实现示例

    这篇文章主要介绍了Python识别验证码的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09
  • Flask框架学习笔记之模板操作实例详解

    Flask框架学习笔记之模板操作实例详解

    这篇文章主要介绍了Flask框架学习笔记之模板操作,结合实例形式详细分析了flask框架模板引擎Jinja2的模板调用、模板继承相关原理与操作技巧,需要的朋友可以参考下
    2019-08-08
  • Python性能提升之延迟初始化

    Python性能提升之延迟初始化

    本文给大家分享的是在Python中使用延迟计算来提升性能的方法,非常的实用,有需要的小伙伴可以参考下
    2016-12-12
  • 数据库操作入门PyMongo MongoDB基本用法

    数据库操作入门PyMongo MongoDB基本用法

    这篇文章主要为大家介绍了数据库操作入门PyMongo MongoDB基本用法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-11-11
  • Python利用Selenium实现弹出框的处理

    Python利用Selenium实现弹出框的处理

    经常出现在网页上的基于JavaScript实现的弹出框有三种,分别是 alert、confirm、prompt 。本文主要是学习如何利用selenium处理这三种弹出框,感兴趣的可以了解一下
    2022-06-06
  • python顺序的读取文件夹下名称有序的文件方法

    python顺序的读取文件夹下名称有序的文件方法

    今天小编就为大家分享一篇python顺序的读取文件夹下名称有序的文件方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python中的迭代和列表生成式

    Python中的迭代和列表生成式

    这篇文章主要介绍了Python中的迭代和列表生成式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教<BR>
    2024-02-02
  • 详解python3中zipfile模块用法

    详解python3中zipfile模块用法

    本篇文章给大家分享了关于python3中zipfile模块的详细用法以及技术难点解析,有兴趣的朋友跟着学习下吧。
    2018-06-06
  • python实现的简单FTP上传下载文件实例

    python实现的简单FTP上传下载文件实例

    这篇文章主要介绍了python实现的简单FTP上传下载文件的方法,实例分析了Python基于FTP模块实现文件传输的技巧,需要的朋友可以参考下
    2015-06-06
  • Python任务调度模块APScheduler使用

    Python任务调度模块APScheduler使用

    这篇文章主要介绍了Python任务调度模块APScheduler使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-04-04

最新评论