matplotlib绘制雷达图的基本配置(万能模板案例)

 更新时间:2022年04月13日 10:31:02   作者:王小王-123  
本文主要介绍了matplotlib绘制雷达图的基本配置(万能模板案例),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

介绍

雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法。轴的相对位置和角度通常是无信息的。 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图。它相当于平行坐标图,轴径向排列。

应用场景

用于成绩的透视,比如查看你是否偏科,知晓你的兴趣偏向于哪一方面

案例一(成绩雷达图重叠)

# coding=utf-8
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']     #显示中文
plt.rcParams['axes.unicode_minus']=False       #正常显示负号
 
results = [
    {"大学英语": 87, "高等数学": 79, "体育": 95, "计算机基础": 92, "程序设计": 85},
    {"大学英语": 80, "高等数学": 90, "体育": 91, "计算机基础": 85, "程序设计": 88}
]
data_length = len(results[0])
# 将极坐标根据数据长度进行等分
angles = np.linspace(0, 2*np.pi, data_length, endpoint=False)
labels = [key for key in results[0].keys()]
score = [[v for v in result.values()] for result in results]
# 使雷达图数据封闭
score_a = np.concatenate((score[0], [score[0][0]]))
score_b = np.concatenate((score[1], [score[1][0]]))
angles = np.concatenate((angles, [angles[0]]))
labels = np.concatenate((labels, [labels[0]]))
# 设置图形的大小
fig = plt.figure(figsize=(8, 6), dpi=100)
# 新建一个子图
ax = plt.subplot(111, polar=True)
# 绘制雷达图
ax.plot(angles, score_a, color='g')
ax.plot(angles, score_b, color='b')
# 设置雷达图中每一项的标签显示
ax.set_thetagrids(angles*180/np.pi, labels)
# 设置雷达图的0度起始位置
ax.set_theta_zero_location('N')  # E W S N SW SE NW NE
# 设置雷达图的坐标刻度范围
ax.set_rlim(0, 100)
# 设置雷达图的坐标值显示角度,相对于                                                                                                                                                                                                                                                                                                                                                                                            y               起始角度的偏移量
ax.set_rlabel_position(270)
ax.set_title("成绩对比")
plt.legend(["张三", "李四"], loc='best')
plt.show()

案例二(成绩雷达图左右图)

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']     #显示中文
plt.rcParams['axes.unicode_minus']=False       #正常显示负号
 
results = [{"大学英语": 87, "高等数学": 79, "体育": 95, "计算机基础": 92, "程序设计": 85},
   {"大学英语": 80, "高等数学": 90, "体育": 91, "计算机基础": 85, "程序设计": 88}]
data_length = len(results[0])
angles = np.linspace(0, 2*np.pi, data_length, endpoint=False)
labels = [key for key in results[0].keys()]
score = [[v for v in result.values()] for result in results]
score_a = np.concatenate((score[0], [score[0][0]]))  # 将每个数组的第一个元素添加到末尾,首尾相连
score_b = np.concatenate((score[1], [score[1][0]]))  # 将每个数组的第一个元素添加到末尾,首尾相连
angles = np.concatenate((angles, [angles[0]]))
labels = np.concatenate((labels, [labels[0]]))
fig = plt.figure(figsize=(10, 6), dpi=100)
fig.suptitle("成绩对比")
ax1 = plt.subplot(121, polar=True)
ax2 = plt.subplot(122, polar=True)
ax, data, name = [ax1, ax2], [score_a, score_b], ["张三", "李四"]
for i in range(2):  # 0:左图 张三,1:右图 李四
    for j in np.arange(0, 100+20, 20):
        ax[i].plot(angles, 6*[j], '-.', lw=0.5, color='#123456')  # 画五边形框,lw=linewidth
    for j in range(5):
        ax[i].plot([angles[j], angles[j]], [0, 100], ':', lw=0.7, color='green')  # 画5条半径线,每个角度连接圆心0和顶点100
        ax[i].plot(angles, data[i], color='b')   # 在极坐标下画成绩折线图
        ax[i].fill(angles, data[i],color='#B34543',alpha=0.1)
        ax[i].spines['polar'].set_visible(False)  # 隐藏最外圈的圆
         # 隐藏圆形网格线
        ax[i].grid(False)
    for a, b in zip(angles, data[i]):
        ax[i].text(a, b+5, '%.00f' % b, ha='center', va='center', fontsize=12, color='b')
        ax[i].set_thetagrids(angles*180/np.pi, labels)
        ax[i].set_theta_zero_location('N')
        ax[i].set_rlim(0, 100)
        ax[i].set_rlabel_position(0)
        ax[i].set_title(name[i])
plt.show()

极坐标

import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(10,5))  # 设置画布
 
ax1 = plt.subplot(121, projection='polar')  # 左图: projection='polar' 表示极坐标系
ax2 = plt.subplot(122)                      # 右图: 默认是直角坐标系
 
x = np.linspace(0,2*np.pi,9)   # 0 - 2Π 平均划分成9个点 [0,1/4,1/2,3/4,1,5/4/,3/2,7/4,2]  0pi = 2pi
y = np.random.random(9)*10        # 随机9个值
y[-1] = y[0]                      # 首位相连
 
ax1.plot(x,y,marker='.')    # 画左图(ax1)  极坐标 (x表示角度,y表示半径)
ax2.plot(x,y,marker='.')    # 画右图(ax2)直角坐标 (x表示横轴,y表示纵轴)
 
ax1.fill(x,y,alpha=0.3)
ax2.fill(x,y,alpha=0.3)
 
plt.show()

 到此这篇关于matplotlib绘制雷达图的基本配置(万能模板案例)的文章就介绍到这了,更多相关matplotlib 雷达图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 进程池的两种不同实现方法示例

    python 进程池的两种不同实现方法示例

    这篇文章主要为大家介绍了python 进程池的两种不同实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • 一文教你Python如何使用sqlparse玩转SQL解析

    一文教你Python如何使用sqlparse玩转SQL解析

    sqlparse 是一个 Python 第三方库,专门用于解析和格式化 SQL 语句,它提供了强大的 SQL 解析功能,下面小编就来为大家详细介绍一下它的具体使用吧
    2025-02-02
  • Python实现的使用telnet登陆聊天室实例

    Python实现的使用telnet登陆聊天室实例

    这篇文章主要介绍了Python实现的使用telnet登陆聊天室,以实例形式较为详细的分析了Python实现聊天室及Telnet登陆的相关技巧,需要的朋友可以参考下
    2015-06-06
  • numpy最值、求和的实现

    numpy最值、求和的实现

    本文主要介绍了numpy最值、求和的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • python pandas模块进行数据分析

    python pandas模块进行数据分析

    Python的Pandas模块是一个强大的数据处理工具,可以用来读取、处理和分析各种数据,本文主要介绍了python pandas模块进行数据分析,具有一定的参考价值,感兴趣的可以了解一下
    2024-01-01
  • 用Python实现Newton插值法

    用Python实现Newton插值法

    最近在做数值分析的作业,作业里面的小数点让计算能力本就薄弱的我雪上加霜,为了偷个小懒快速把作业完成,所以有了这篇博客。哈哈哈哈哈,让我们一起复制copy,完成作业,哈哈哈哈需要的朋友可以参考下
    2021-04-04
  • Pandas DataFrame中的tuple元素遍历的实现

    Pandas DataFrame中的tuple元素遍历的实现

    这篇文章主要介绍了Pandas DataFrame中的tuple元素遍历的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • 简单介绍Python中的len()函数的使用

    简单介绍Python中的len()函数的使用

    这篇文章主要简单介绍了Python中的len()函数的使用,包括在四种情况下的使用小例子,是Python学习当中的基础知识,需要的朋友可以参考下
    2015-04-04
  • python arcpy练习之面要素重叠拓扑检查

    python arcpy练习之面要素重叠拓扑检查

    今天小编就为大家分享一篇Python ArcPy的面要素重叠拓扑检查,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-09-09
  • Python爬虫基础之初次使用scrapy爬虫实例

    Python爬虫基础之初次使用scrapy爬虫实例

    今天给大家带来的是关于Python爬虫的相关知识,文章围绕着Python scrapy展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06

最新评论