基于Matlab实现野狗优化算法的示例代码

 更新时间:2022年04月22日 15:12:35   作者:电力系统与算法之美  
野狗优化算法(Dingo Optimization Algorithm, DOA)模仿澳大利亚野狗的社交行为。DOA算法的灵感来源于野狗的狩猎策略,即迫害攻击、分组策略和食腐行为。本文将通过Matlab实现这一算法,感兴趣的可以了解一下

1.概述

野狗优化算法(Dingo Optimization Algorithm, DOA)模仿澳大利亚野狗的社交行为。DOA算法的灵感来源于野狗的狩猎策略,即迫害攻击、分组策略和食腐行为。为了提高该方法的整体效率和性能,在DOA中制定了三种与四条规则相关联的搜索策略,这些策略和规则在搜索空间的强化(开发)和多样化(探索)之间提供了一种精确的平衡。

该算法的优点:寻优能力强,收敛速度快等特点。

2.捕食过程的数学模型

2.1 种群初始化

野狗种群在搜索边界内随机初始化:

其中,lbi和ubi分别表示个体的上下边界,randi是[0,1]之间的随机数。

2.2 群体攻击过程

捕食者通常使用高度智能的狩猎技术,野狗通常单独捕食小猎物,如兔子,但当捕食大猎物,如袋鼠时,它们会成群结队。野狗能找到猎物的位置并将其包围,其行为如上所示:

其中,t代表当前的迭代次数,是野狗新位置; na是在[2,SizePop/2]的逆序中生成的随机整数,其中SizePop是野狗种群的规模; 是将攻击的野狗的子集,其中是随机生成的野狗种群;是当前野狗的位置是上一次迭代中发现的最佳野狗;β1是在[-2.2]内均匀生成的随机数,它是一个比例因子,可改变野狗轨迹的大小。

2.3 迫害攻击过程

野狗通常捕猎小猎物,直到单独捕获为止。行为模拟为:

其中,是野狗新位置,是上一次迭代中发现的最佳野狗,β2的值与式2.2中的值相同,β2是在[-1,1]区间内均匀生成的随机数,r1是在从1到最大搜索代理(野狗)大小的区间内生成的随机数,是随机选择的第r1个野狗,其中i≠r1。

2.4 野狗的存活率

在DOA中,野狗的存活率值由下式给出:

其中,fitnessmax和fitnessmin分别是当前一代中最差和最佳的适应度值,而fitness(i)是第i个野狗的当前适应度值。式(5)中的生存向量包含[0,1]区间内的归一化适应度。

3.Matlab代码实现

3.1 代码

%====欢迎关注公众号:电力系统与算法之美====
 
function DOA()
 
%% ====参数设置====
 
popsize=20;    % 种群规模
Iteration=1000;     % 迭代次数
lb = -10;     % 各维度的下限
ub = 10;  % 各维度的上限
dim = 2;  % 优化变量的个数
 
P= 0.5;  % Hunting or Scavenger  rate. 
Q= 0.7;  % Group attack or persecution?
beta1= -2 + 4* rand();  % -2 < beta < 2     
beta2= -1 + 2* rand();  % -1 < beta2 < 1    
naIni= 2; % minimum number of dingoes that will attack
naEnd= popsize /naIni; % maximum number of dingoes that will attack
na= round(naIni + (naEnd-naIni) * rand()); % number of dingoes that will attack
 
%% ====初始化种群位置=====
Positions=lb + (ub - lb).*rand(popsize, dim);
for i=1:size(Positions,1)
    Fitness(i)=sum(Positions(i,:).^2); % get fitness
end
[best_score, minIdx]= min(Fitness);  % the min fitness value vMin and the position minIdx
best_x= Positions(minIdx,:);  % the best vector
[worst_score, ~]= max(Fitness); % the max fitness value vMax and the position maxIdx
curve=zeros(1,Iteration);
 
%% Section 2.2.4 Dingoes'survival rates
 
for i=1:size(Fitness,2)
    survival(i)= (worst_score-Fitness(i))/(worst_score - best_score);
end
 
 
%% =====开始循环===========
for t=1:Iteration
    for r=1:popsize
        if rand() < P  % Hunting
            sumatory=0;
 
            c=1;
            vAttack=[];
            while(c<=na)
                idx =round( 1+ (popsize-1) * rand());
 
                band= 0;
                for i=1:size(vAttack, 2)
                    if idx== vAttack(i)
                        band=1;
                        break;
                    end
 
                end
 
                if ~band
                    vAttack(c) = idx;
                    c=c+1;
                end
            end
 
            for j=1:size(vAttack,2)
                sumatory= sumatory + Positions(vAttack(j),:)- Positions(r,:);
            end
            sumatory=sumatory/na;
 
            if rand() < Q  % group attack
                v(r,:)=  beta1 * sumatory-best_x; % Strategy 1: Eq.2
            else  %  Persecution
                r1= round(1+ (popsize-1)* rand()); %
                v(r,:)= best_x + beta1*(exp(beta2))*((Positions(r1,:)-Positions(r,:))); % 
            end
        else % Scavenger
            r1= round(1+ (popsize-1)* rand());
            if rand() < 0.5
                val= 0;
            else
                val=1;
            end
 
            v(r,:)=   (exp(beta2)* Positions(r1,:)-((-1)^val)*Positions(r,:))/2; % 
        end
        if survival(r) <= 0.3  % Section 2.2.4, Algorithm 3 - Survival procedure
            band=1;
            while band
                r1= round(1+ (popsize-1)* rand());
                r2= round(1+ (popsize-1)* rand());
                if r1 ~= r2
                    band=0;
                end
            end
            if rand() < 0.5
                val= 0;
            else
                val=1;
            end
            v(r,:)=   best_x + (Positions(r1,:)-((-1)^val)*Positions(r2,:))/2;  % Section 2.2.4, Strategy 4: Eq.6
        end
        % Return back the search agents that go beyond the boundaries of the search space .
        Flag4ub=v(r,:)>ub;
        Flag4lb=v(r,:)<lb;
        v(r,:)=(v(r,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        % Evaluate new solutions
        Fnew= sum(v(r,:).^2);
        % Update if the solution improves
        if Fnew <= Fitness(r)
            Positions(r,:)= v(r,:);
            Fitness(r)= Fnew;
        end
        if Fnew <= best_score
            best_x= v(r,:);
            best_score= Fnew;
        end
    end
    curve(t)= best_score;
    [worst_score, ~]= max(Fitness);
    for i=1:size(Fitness,2)
        survival(i)= (worst_score-Fitness(i))/(worst_score - best_score);
    end
 
end
 
 
%======结束优化===============
 
%% 进化曲线
figure
semilogy(curve,'Color','r','LineWidth',2)
grid on
title('收敛曲线')
xlabel('迭代次数');
ylabel('最佳适应度');
axis tight
legend('DOA')
 
 
display(['最优解: ', num2str(best_x)]);
display(['最小值: ', num2str(best_score)]);
 
end

3.2 结果

到此这篇关于基于Matlab实现野狗优化算法的示例代码的文章就介绍到这了,更多相关Matlab野狗优化算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C/C++ 读取16进制文件的方法

    C/C++ 读取16进制文件的方法

    下面小编就为大家带来一篇C/C++ 读取16进制文件的方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-12-12
  • C/C++实现发送与接收HTTP/S请求的示例代码

    C/C++实现发送与接收HTTP/S请求的示例代码

    HTTP(Hypertext Transfer Protocol)是一种用于传输超文本的协议,它是一种无状态的、应用层的协议,用于在计算机之间传输超文本文档,通常在 Web 浏览器和 Web 服务器之间进行数据通信,本文给大家介绍了C/C++发送与接收HTTP/S请求,需要的朋友可以参考下
    2023-11-11
  • C++语言编写写日志类

    C++语言编写写日志类

    这篇文章主要介绍了C++语言编写写日志类的相关资料,支持写日志级别设置、支持多线程、支持可变形参表写日志,需要的朋友可以参考下
    2015-12-12
  • C++多重继承引发的重复调用问题与解决方法

    C++多重继承引发的重复调用问题与解决方法

    这篇文章主要介绍了C++多重继承引发的重复调用问题与解决方法,结合具体实例形式分析了C++多重调用中的重复调用问题及相应的解决方法,需要的朋友可以参考下
    2018-05-05
  • C语言实现电器销售管理系统

    C语言实现电器销售管理系统

    这篇文章主要为大家详细介绍了C语言实现电器销售管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-06-06
  • C++ Socket实现TCP与UDP网络编程

    C++ Socket实现TCP与UDP网络编程

    本文主要介绍了C++ Socket实现TCP与UDP网络编程,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • C++编译原理之求解First集合

    C++编译原理之求解First集合

    这篇文章主要介绍的是C++/编译原理求解First集合,本文将围绕该话题详细展开全文,需要的小伙伴可以参考一下
    2021-10-10
  • 浅析内存对齐与ANSI C中struct型数据的内存布局

    浅析内存对齐与ANSI C中struct型数据的内存布局

    当在C中定义了一个结构类型时,它的大小是否等于各字段(field)大小之和?编译器将如何在内存中放置这些字段?ANSI C对结构体的内存布局有什么要求?而我们的程序又能否依赖这种布局
    2013-09-09
  • C语言中fchdir()函数和rewinddir()函数的使用详解

    C语言中fchdir()函数和rewinddir()函数的使用详解

    这篇文章主要介绍了C语言中fchdir()函数和rewinddir()函数的使用详解,是C语言入门学习中的基础知识,需要的朋友可以参考下
    2015-09-09
  • 解析C语言中空指针、空指针常量、NULL & 0的详解

    解析C语言中空指针、空指针常量、NULL & 0的详解

    本篇文章是对C语言中空指针、空指针常量、NULL & 0 进行了详细的分析介绍,需要的朋友参考下
    2013-05-05

最新评论