python神经网络学习利用PyTorch进行回归运算

 更新时间:2022年05月04日 10:31:04   作者:Bubbliiiing  
这篇文章主要为大家介绍了python神经网络学习利用PyTorch进行回归运算的实现代码,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

学习前言

我发现不仅有很多的Keras模型,还有很多的PyTorch模型,还是学学Pytorch吧,我也想了解以下tensor到底是个啥。

PyTorch中的重要基础函数

1、class Net(torch.nn.Module)神经网络的构建:

PyTorch中神经网络的构建和Tensorflow的不一样,它需要用一个类来进行构建(后面还可以用与Keras类似的Sequential模型构建),当然基础还是用类构建,这个类需要继承PyTorch中的神经网络模型,torch.nn.Module,具体构建方式如下:

# 继承torch.nn.Module模型
class Net(torch.nn.Module):
	# 重载初始化函数(我忘了这个是不是叫重载)
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # Applies a linear transformation to the incoming data: :math:y = xA^T + b
        # 全连接层,公式为y = xA^T + b
        # 在初始化的同时构建两个全连接层(也就是一个隐含层)
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
	# forward函数用于构建前向传递的过程
    def forward(self, x):
        # 隐含层的输出
        hidden_layer = functional.relu(self.hidden(x))
        # 实际的输出
        output_layer = self.predict(hidden_layer)
        return output_layer

该部分构建了一个含有一层隐含层的神经网络,隐含层神经元个数为n_hidden。
在建立了上述的类后,就可以通过如下函数建立神经网络:

net = Net(n_feature=1, n_hidden=10, n_output=1)

2、optimizer优化器

optimizer用于构建模型的优化器,与tensorflow中优化器的意义相同,PyTorch的优化器在前缀为torch.optim的库中。

优化器需要传入net网络的参数。

具体使用方式如下:

# torch.optim是优化器模块
# Adam可以改成其它优化器,如SGD、RMSprop等
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)

3、loss损失函数定义

loss用于定义神经网络训练的损失函数,常用的损失函数是均方差损失函数(回归)和交叉熵损失函数(分类)。

具体使用方式如下:

# 均方差lossloss_func = torch.nn.MSELoss() 

4、训练过程

训练过程分为三个步骤:

1、利用网络预测结果。

prediction = net(x)

2、利用预测的结果与真实值对比生成loss。

loss = loss_func(prediction, y)

3、进行反向传递(该部分有三步)。

# 均方差loss
# 反向传递步骤
# 1、初始化梯度
optimizer.zero_grad()
# 2、计算梯度
loss.backward()
# 3、进行optimizer优化
optimizer.step()

全部代码

这是一个简单的回归预测模型。

import torch
from torch.autograd import Variable
import torch.nn.functional as functional
import matplotlib.pyplot as plt
import numpy as np
# x的shape为(100,1)
x = torch.from_numpy(np.linspace(-1,1,100).reshape([100,1])).type(torch.FloatTensor)
# y的shape为(100,1)
y = torch.sin(x) + 0.2*torch.rand(x.size())
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # Applies a linear transformation to the incoming data: :math:y = xA^T + b
        # 全连接层,公式为y = xA^T + b
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
    def forward(self, x):
        # 隐含层的输出
        hidden_layer = functional.relu(self.hidden(x))
        output_layer = self.predict(hidden_layer)
        return output_layer
# 类的建立
net = Net(n_feature=1, n_hidden=10, n_output=1)
# torch.optim是优化器模块
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
# 均方差loss
loss_func = torch.nn.MSELoss() 
for t in range(1000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    # 反向传递步骤
    # 1、初始化梯度
    optimizer.zero_grad()
    # 2、计算梯度
    loss.backward()
    # 3、进行optimizer优化
    optimizer.step()
    if t & 50 == 0:
        print("The loss is",loss.data.numpy())

运行结果为:

The loss is 0.27913737
The loss is 0.2773982
The loss is 0.27224126
…………
The loss is 0.0035993527
The loss is 0.0035974088
The loss is 0.0035967692

以上就是python神经网络学习利用PyTorch进行回归运算的详细内容,更多关于python神经网络PyTorch回归运算的资料请关注脚本之家其它相关文章!

相关文章

  • 利用python实现汉诺塔游戏

    利用python实现汉诺塔游戏

    这篇文章主要为大家详细介绍了利用python实现汉诺塔游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-03-03
  • Python易忽视知识点小结

    Python易忽视知识点小结

    这篇文章主要介绍了Python易忽视知识点,实例分析了Python中容易被忽视的常见操作技巧,需要的朋友可以参考下
    2015-05-05
  • Python实现导弹自动追踪代码实例

    Python实现导弹自动追踪代码实例

    这篇文章主要介绍了Python实现导弹自动追踪代码实例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-11-11
  • Python3.4学习笔记之类型判断,异常处理,终止程序操作小结

    Python3.4学习笔记之类型判断,异常处理,终止程序操作小结

    这篇文章主要介绍了Python3.4学习笔记之类型判断,异常处理,终止程序操作,结合具体实例形式分析了Python3.4模块导入、异常处理、退出程序等相关操作技巧与注意事项,需要的朋友可以参考下
    2019-03-03
  • 关于Numpy数据类型对象(dtype)使用详解

    关于Numpy数据类型对象(dtype)使用详解

    今天小编就为大家分享一篇关于Numpy数据类型对象(dtype)使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • Python中实现从目录中过滤出指定文件类型的文件

    Python中实现从目录中过滤出指定文件类型的文件

    这篇文章主要介绍了Python中实现从目录中过滤出指定文件类型的文件,本文是一篇学笔记,实例相对简单,需要的朋友可以参考下
    2015-02-02
  • python爬虫破解字体加密案例详解

    python爬虫破解字体加密案例详解

    这篇文章主要介绍了python爬虫破解字体加密案例详解,本文通过图文实例相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • python斯皮尔曼spearman相关性分析实例

    python斯皮尔曼spearman相关性分析实例

    这篇文章主要为大家介绍了python斯皮尔曼spearman相关性分析实例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02
  • python使用tkinter实现透明窗体上绘制随机出现的小球(实例代码)

    python使用tkinter实现透明窗体上绘制随机出现的小球(实例代码)

    今天教大家怎么实现Tkinter透明窗体,在上篇文章给大家介绍过透明窗体上绘制小球,今天接着通过实例代码给大家分享python使用tkinter实现透明窗体上绘制随机出现的小球的实例代码,感兴趣的朋友跟随小编一起看看吧
    2021-05-05
  • pytorch动态网络以及权重共享实例

    pytorch动态网络以及权重共享实例

    今天小编就为大家分享一篇pytorch动态网络以及权重共享实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01

最新评论