python深度学习标准库使用argparse调参

 更新时间:2022年06月02日 09:35:50   作者:MapleTx's  
这篇文章主要为大家介绍了python深度学习标准库使用argparse调参实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

argparse是深度学习项目调参时常用的python标准库,使用argparse后,我们在命令行输入的参数就可以以这种形式python filename.py --lr 1e-4 --batch_size 32来完成对常见超参数的设置。,一般使用时可以归纳为以下三个步骤

使用步骤:

  • 创建ArgumentParser()对象
  • 调用add_argument()方法添加参数
  • 使用parse_args()解析参数 在接下来的内容中,我们将以实际操作来学习argparse的使用方法
import argparse
parser = argparse.ArgumentParser() # 创建一个解析对象
parser.add_argument() # 向该对象中添加你要关注的命令行参数和选项
args = parser.parse_args() # 调用parse_args()方法进行解析

常见规则

  • 在命令行中输入python demo.py -h或者python demo.py --help可以查看该python文件参数说明
  • arg字典类似python字典,比如arg字典Namespace(integers='5')可使用arg.参数名来提取这个参数
  • parser.add_argument('integers', type=str, nargs='+',help='传入的数字') nargs是用来说明传入的参数个数,'+' 表示传入至少一个参数,'*' 表示参数可设置零个或多个,'?' 表示参数可设置零个或一个
  • parser.add_argument('-n', '--name', type=str, required=True, default='', help='名') required=True表示必须参数, -n表示可以使用短选项使用该参数
  • parser.add_argument("--test_action", default='False', action='store_true')store_true 触发时为真,不触发则为假(test.py,输出为 False ,test.py --test_action,输出为 True)

使用config文件传入超参数

为了使代码更加简洁和模块化,可以将有关超参数的操作写在config.py,然后在train.py或者其他文件导入就可以。具体的config.py可以参考如下内容。

import argparse  
def get_options(parser=argparse.ArgumentParser()):  
    parser.add_argument('--workers', type=int, default=0,  
                        help='number of data loading workers, you had better put it '  
                              '4 times of your gpu')  
    parser.add_argument('--batch_size', type=int, default=4, help='input batch size, default=64')  
    parser.add_argument('--niter', type=int, default=10, help='number of epochs to train for, default=10')  
    parser.add_argument('--lr', type=float, default=3e-5, help='select the learning rate, default=1e-3')  
    parser.add_argument('--seed', type=int, default=118, help="random seed")  
    parser.add_argument('--cuda', action='store_true', default=True, help='enables cuda')  
    parser.add_argument('--checkpoint_path',type=str,default='',  
                        help='Path to load a previous trained model if not empty (default empty)')  
    parser.add_argument('--output',action='store_true',default=True,help="shows output")  
    opt = parser.parse_args()  
    if opt.output:  
        print(f'num_workers: {opt.workers}')  
        print(f'batch_size: {opt.batch_size}')  
        print(f'epochs (niters) : {opt.niter}')  
        print(f'learning rate : {opt.lr}')  
        print(f'manual_seed: {opt.seed}')  
        print(f'cuda enable: {opt.cuda}')  
        print(f'checkpoint_path: {opt.checkpoint_path}')  
    return opt  
if __name__ == '__main__':  
    opt = get_options()
$ python config.py
num_workers: 0
batch_size: 4
epochs (niters) : 10
learning rate : 3e-05
manual_seed: 118
cuda enable: True
checkpoint_path:

随后在train.py等其他文件,我们就可以使用下面的这样的结构来调用参数。

# 导入必要库
...
import config
opt = config.get_options()
manual_seed = opt.seed
num_workers = opt.workers
batch_size = opt.batch_size
lr = opt.lr
niters = opt.niters
checkpoint_path = opt.checkpoint_path
# 随机数的设置,保证复现结果
def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
...
if __name__ == '__main__':
  set_seed(manual_seed)
  for epoch in range(niters):
    train(model,lr,batch_size,num_workers,checkpoint_path)
    val(model,lr,batch_size,num_workers,checkpoint_path)

argparse中action的可选参数store_true

# test.py
import argparse
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--test_action", action='store_true')
    args = parser.parse_args()
    action_val = args.test_action
    print(action_val)

以上面的代码为例,若触发 test_action,则为 True, 否则为 False:

  • $ python test.py,输出为 False
  • $ python test.py --test_action,输出为 True

若在上面的代码中加入default,设为 False 时:

parser.add_argument("--test_action", default='False', action='store_true')
  • $ python test.py,输出为 False
  • $ python test.py --test_action,输出为 True

default 设为 True 时:

parser.add_argument("--test_action", default='True', action='store_true')
  • $ python test.py,输出为 True
  • $ python test.py --test_action,输出为 True

参考:https://www.jb51.net/article/250215.htm

以上就是python深度学习标准库使用argparse调参的详细内容,更多关于python标准库argparse调参的资料请关注脚本之家其它相关文章!

相关文章

  • Python 创建空的list,以及append用法讲解

    Python 创建空的list,以及append用法讲解

    今天小编就为大家分享一篇Python 创建空的list,以及append用法讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • python基础教程之基本内置数据类型介绍

    python基础教程之基本内置数据类型介绍

    在Python程序中,每个数据都是对像,每个对像都有自己的一个类型。不同类型有不同的操作方法,使用内置数据类型独有的操作方法,可以更快的完成很多工作
    2014-02-02
  • Python与Redis的连接教程

    Python与Redis的连接教程

    这篇文章主要介绍了Python与Redis的连接教程,Redis是一个高性能的基于内存的数据库,需要的朋友可以参考下
    2015-04-04
  • python生成式的send()方法(详解)

    python生成式的send()方法(详解)

    下面小编就为 大家带来一篇python生成式的send()方法(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • python全局解释器GIL锁机制详解

    python全局解释器GIL锁机制详解

    我们要知道一点GIL并不是Python的特性,它是Python解释器Cpython引入的一个概念,下面这篇文章主要给大家介绍了关于python全局解释器GIL锁机制的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2022-12-12
  • Python操作MongoDB增删改查代码示例

    Python操作MongoDB增删改查代码示例

    这篇文章主要介绍了Python操作MongoDB增删改查代码示例,需要的朋友可以参考下
    2022-12-12
  • Python做图像处理及视频音频文件分离和合成功能

    Python做图像处理及视频音频文件分离和合成功能

    这篇文章主要介绍了Python做图像处理及视频音频文件分离和合成功能,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • Python3之字符串比较_重写cmp函数方式

    Python3之字符串比较_重写cmp函数方式

    这篇文章主要介绍了Python3之字符串比较_重写cmp函数方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-02-02
  • 对python requests发送json格式数据的实例详解

    对python requests发送json格式数据的实例详解

    今天小编就为大家分享一篇对python requests发送json格式数据的实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python爬虫基础之XPath语法与lxml库的用法详解

    Python爬虫基础之XPath语法与lxml库的用法详解

    这篇文章主要给大家介绍了关于Python爬虫基础之XPath语法与lxml库用法的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-09-09

最新评论