Python 如何给图像分类(图像识别模型构建)

 更新时间:2022年06月14日 09:33:04   作者:编程学习网  
这篇文章主要介绍了Python 教你如何给图像分类,今天的文章主要是讲图像识别模型如何构建,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

在日常生活中总是有给图像分类的场景,比如垃圾分类、不同场景的图像分类等;今天的文章主要是基于图像识别场景进行模型构建。图像识别是通过 Python深度学习来进行模型训练,再使用模型对上传的电子表单进行自动审核与比对后反馈相应的结果。主要是利用 Python Torchvision 来构造模型,Torchvision 服务于Pytorch 深度学习框架,主要是用来生成图片、视频数据集以及训练模型。

模型构建

构建模型为了直观,需要使用 Jupyter notebook 进行模型的构建,

导入所需包

图像识别需要用到深度学习相关模块,所以需要导入相应的包,具体导入的包如下:

%reload_ext autoreload
%autoreload 2
import torch
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision import transforms as tfs
from torchvision import models
from torch import nn
import matplotlib.pyplot as plt
%matplotlib inline
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

是否使用 GPU

模型的训练主要方式是基于 GPU 或者 CPU 训练,在没有 GPU 的条件下就在 CPU 下进行训练,模型的训练需要花费一定的时间,训练时长根据训练集的数据和硬件性能而定,训练结果精确性根据数据的多少和准确性而且,深度学习需要大量的素材才能判断出精确的结果,所以需要申明使用 CPU 进行训练:

# 是否使用GPU
use_gpu = False

数据增强

将拿到的数据进行训练集的数据预处理并设置训练分层数,再将拿到的图片进行水平翻转后对图片进行剪裁, 剪裁后将图片进行随机翻转,增强随机对比度以及图片颜色变化

# 数据增强
train_transform = tfs.Compose([
    # 训练集的数据预处理
    tfs.Resize([224, 224]),
    tfs.RandomHorizontalFlip(),
    tfs.RandomCrop(128),
    tfs.ToTensor(),
    tfs.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
])
test_transform = tfs.Compose([
    tfs.Resize([224,224]),
#     tfs.RandomCrop(128),
    tfs.ToTensor(),
    tfs.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
])
# 每一个batch的数据集数目
batch_size = 10

数据集和验证集准备

模型训练需要准备数据集和验证集,只有足够的照片才能得到更精准的答案。训练集和验证集部分代码如下:

# 构建训练集和验证集
# 
train_set = ImageFolder('./dataset1/train', train_transform)
train_data = DataLoader(train_set, batch_size, shuffle=True, num_workers=0)
valid_set = ImageFolder('./dataset1/valid', test_transform)
valid_data = DataLoader(valid_set, 2*batch_size, shuffle=False, num_workers=0)
train_set.class_to_idx
len(valid_data)
# 数据集准备
try:
    if iter(train_data).next()[0].shape[0] == batch_size and \
    iter(valid_data).next()[0].shape[0] == 2*batch_size:
        print('Dataset is ready!')
    else:
        print('Not success, maybe the batch size is wrong')
except:
    print('not success, image transform is wrong!')

模型构建并准备模型

# 构建模型
def get_model():
    model = models.resnet50(pretrained=True)
    model.fc = nn.Linear(2048, 3)
    return model
try:
    model = get_model()
    with torch.no_grad():
        scorce = model(iter(train_data).next()[0])
        print(scorce.shape[0], scorce.shape[1])
    if scorce.shape[0] == batch_size and scorce.shape[1] == 3:
        print('Model is ready!')
    else:
        print('Model is failed!')
except:
    print('model is wrong')
if use_gpu:
    model = model.cuda()

构建模型优化器

# 构建loss函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 1e-4)
# 训练的epoches数目
max_epoch = 20

模型训练和训练结果可视化

数据集和训练集准备好后进行模型训练和训练结果可视化,部分代码如下:

def train(model, train_data, valid_data, max_epoch, criterion, optimizer):
    freq_print = int(len(train_data) / 3)
    metric_log = dict()
    metric_log['train_loss'] = list()
    metric_log['train_acc'] = list()
    if valid_data is not None:
        metric_log['valid_loss'] = list()
        metric_log['valid_acc'] = list()
    for e in range(max_epoch):
        model.train()
        running_loss = 0
        running_acc = 0
        for i, data in enumerate(train_data, 1):
            img, label = data
            if use_gpu:
                img = img.cuda()
                label = label.cuda()
            # forward前向传播
            out = model(img)
            # 计算误差
            loss = criterion(out, label.long())
            # 反向传播,更新参数
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # 计算准确率
            _, pred = out.max(1)
            num_correct = (pred == label.long()).sum().item()
            acc = num_correct/img.shape[0]
            running_loss += loss.item()
            running_acc +=acc
            if i % freq_print == 0:
                print('[{}]/[{}], train loss: {:.3f}, train acc: {:.3f}' \
                .format(i, len(train_data), running_loss / i, running_acc / i))
        metric_log['train_loss'].append(running_loss / len(train_data))
        metric_log['train_acc'].append(running_acc / len(train_data))
        if valid_data is not None:
            model.eval()
            running_loss = 0
            running_acc = 0
            for data in valid_data:
                img, label = data
                if use_gpu:
                    img = img.cuda()
                    label = label.cuda()
                # forward前向传播
                out = model(img)
                # 计算误差
                loss = criterion(out, label.long())
                # 计算准确度
                _, pred = out.max(1)
                num_correct = (pred==label.long()).sum().item()
                acc = num_correct/img.shape[0]

                running_loss += loss.item()
                running_acc += acc
            metric_log['valid_loss'].append(running_loss/len(valid_data))
            metric_log['valid_acc'].append(running_acc/len(valid_data))
            print_str = 'epoch: {}, train loss: {:.3f}, train acc: {:.3f}, \
            valid loss: {:.3f}, valid accuracy: {:.3f}'.format(
                        e+1, metric_log['train_loss'][-1], metric_log['train_acc'][-1],
                        metric_log['valid_loss'][-1], metric_log['valid_acc'][-1])
        else:
            print_str = 'epoch: {}, train loss: {:.3f}, train acc: {:.3f}'.format(
                e+1,
                metric_log['train_loss'][-1],
                metric_log['train_acc'][-1])
        print(print_str)
    # 可视化
    nrows = 1
    ncols = 2
    figsize= (10, 5)
    _, figs = plt.subplots(nrows, ncols, figsize=figsize)
    if valid_data is not None:
        figs[0].plot(metric_log['train_loss'], label='train loss')
        figs[0].plot(metric_log['valid_loss'], label='valid loss')
        figs[0].axes.set_xlabel('loss')
        figs[0].legend(loc='best')
        figs[1].plot(metric_log['train_acc'], label='train acc')
        figs[1].plot(metric_log['valid_acc'], label='valid acc')
        figs[1].axes.set_xlabel('acc')
        figs[1].legend(loc='best')
    else:
        figs[0].plot(metric_log['train_loss'], label='train loss')
        figs[0].axes.set_xlabel('loss')
        figs[0].legend(loc='best')
        figs[1].plot(metric_log['train_acc'], label='train acc')
        figs[1].axes.set_xlabel('acc')
        figs[1].legend(loc='best')

调参进行模型训练

# 用作调参
train(model, train_data, valid_data, max_epoch, criterion, optimizer)

保存模型

# 保存模型
torch.save(model.state_dict(), './model/save_model2.pth')

总结

今天的文章主要是讲图像识别模型如何构建。希望对大家有所帮助。

到此这篇关于Python 教你如何给图像分类的文章就介绍到这了,更多相关Python 图像分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python异步通信模块asyncore解读

    Python异步通信模块asyncore解读

    这篇文章主要介绍了Python异步通信模块asyncore的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • windows下Python实现将pdf文件转化为png格式图片的方法

    windows下Python实现将pdf文件转化为png格式图片的方法

    这篇文章主要介绍了windows下Python实现将pdf文件转化为png格式图片的方法,结合实例形式较为详细的分析了Python实现将pdf转换为png格式的相关模块、使用方法与相关注意事项,需要的朋友可以参考下
    2017-07-07
  • python文件路径操作方法总结

    python文件路径操作方法总结

    在本篇文章里小编给大家整理的是一篇关于python文件路径操作方法总结内容,有需要的朋友们可以学习下。
    2020-12-12
  • python中的round()函数用法详解

    python中的round()函数用法详解

    这篇文章主要给大家介绍了关于python中round()函数用法的相关资料,round()函数是Python内置函数之一,用于对数字进行四舍五入操作,需要的朋友可以参考下
    2023-08-08
  • python添加菜单图文讲解

    python添加菜单图文讲解

    在本篇文章中小编给大家整理的是关于python添加菜单图文讲解以及步骤分析,需要的朋友们学习下吧。
    2019-06-06
  • python for循环如何实现控制步长

    python for循环如何实现控制步长

    这篇文章主要介绍了python for循环如何实现控制步长,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • 打开电脑上的QQ的python代码

    打开电脑上的QQ的python代码

    使用python打开电脑上的QQ,方法很简单,调用os模块,然后os.startfile即可
    2013-02-02
  • Python实现为PDF大文件批量去除水印

    Python实现为PDF大文件批量去除水印

    在阅读过程中如果遇到一些带有水印的资料是比较烦心的,而市面上去水印的功能有多要收费且很不方便,那么,如何通过Python来对这类图片水印进行去除呢,本文就来和大家分享一下实现方法吧
    2023-05-05
  • python中文件变化监控示例(watchdog)

    python中文件变化监控示例(watchdog)

    这篇文章主要介绍了python中文件变化监控示例(watchdog),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • python中sort sorted reverse reversed函数的区别说明

    python中sort sorted reverse reversed函数的区别说明

    这篇文章主要介绍了python中sort sorted reverse reversed函数的区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05

最新评论