caffe的python接口caffemodel参数及特征抽取示例

 更新时间:2022年06月29日 14:56:44   作者:denny402  
这篇文章主要介绍了caffe的python接口caffemodel参数及特征抽取示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

正文

如果用公式  y=f(wx+b)

来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项。f是激活函数,有sigmoid、relu等。x就是输入的数据。

数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值。

我们运行代码:

deploy=root + 'mnist/deploy.prototxt'    #deploy文件
caffe_model=root + 'mnist/lenet_iter_9380.caffemodel'   #训练好的 caffemodel
net = caffe.Net(net_file,caffe_model,caffe.TEST)   #加载model和network

就把所有的参数和数据都加载到一个net变量里面了,但是net是一个很复杂的object, 想直接显示出来看是不行的。其中:

net.params: 保存各层的参数值(w和b)

net.blobs: 保存各层的数据值

可用命令:

[(k,v[0].data) for k,v in net.params.items()]

查看各层的参数值,其中k表示层的名称,v[0].data就是各层的W值,而v[1].data是各层的b值。注意:并不是所有的层都有参数,只有卷积层和全连接层才有。

也可以不查看具体值,只想看一下shape,可用命令

[(k,v[0].data.shape) for k,v in net.params.items()]

假设我们知道其中第一个卷积层的名字叫'Convolution1', 则我们可以提取这个层的参数:

w1=net.params['Convolution1'][0].data
b1=net.params['Convolution1'][1].data

输入这些代码,实际查看一下,对你理解network非常有帮助。

同理,除了查看参数,我们还可以查看数据,但是要注意的是,net里面刚开始是没有数据的,需要运行:

net.forward()

之后才会有数据。我们可以用代码:

[(k,v.data.shape) for k,v in net.blobs.items()]

[(k,v.data) for k,v in net.blobs.items()]

来查看各层的数据。注意和上面查看参数的区别,一个是net.params, 一个是net.blobs.

实际上数据刚输入的时候,我们叫图片数据,卷积之后我们就叫特征了。

如果要抽取第一个全连接层的特征,则可用命令:

fea=net.blobs['InnerProduct1'].data

只要知道某个层的名称,就可以抽取这个层的特征。

推荐大家在spyder中,运行一下上面的所有代码,深入理解模型各层。

最后,总结一个代码:

import caffe
import numpy as np
root='/home/xxx/'   #根目录
deploy=root + 'mnist/deploy.prototxt'    #deploy文件
caffe_model=root + 'mnist/lenet_iter_9380.caffemodel'   #训练好的 caffemodel
net = caffe.Net(deploy,caffe_model,caffe.TEST)   #加载model和network
[(k,v[0].data.shape) for k,v in net.params.items()]  #查看各层参数规模
w1=net.params['Convolution1'][0].data  #提取参数w
b1=net.params['Convolution1'][1].data  #提取参数b
net.forward()   #运行测试

[(k,v.data.shape) for k,v in net.blobs.items()]  #查看各层数据规模
fea=net.blobs['InnerProduct1'].data   #提取某层数据(特征)

以上就是caffe的python接口caffemodel参数及特征抽取的详细内容,更多关于python caffemodel参数特征抽取的资料请关注脚本之家其它相关文章!

相关文章

  • Python单链表的简单实现方法

    Python单链表的简单实现方法

    这篇文章主要介绍了Python单链表的简单实现方法,包括定义所需的字段及具体实现代码的分析,需要的朋友可以参考下
    2014-09-09
  • python数据结构之递归方法讲解

    python数据结构之递归方法讲解

    这篇文章主要介绍了python数据结构之递归讲解,递归是解决问题的一种方法,它将问题不断地分成更小的子问题,直到子问题可以用普通的方法解决。通常情况下,递归会使用一个不停调用自己的函数,下面来看看文章对此的详细介绍吧
    2021-12-12
  • Python时间序列的实现

    Python时间序列的实现

    本文主要介绍了Python时间序列的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Pandas实现复制dataframe中的每一行

    Pandas实现复制dataframe中的每一行

    这篇文章主要介绍了Pandas实现复制dataframe中的每一行方式,
    2024-02-02
  • 学习Python中一些实用的库

    学习Python中一些实用的库

    这篇文章主要介绍了Python学习之盘点一些Python中实用的库,有需要的同学可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2021-09-09
  • python实现统计代码行数的方法

    python实现统计代码行数的方法

    这篇文章主要介绍了python实现统计代码行数的方法,涉及Python中os模块及codecs模块的相关使用技巧,需要的朋友可以参考下
    2015-05-05
  • Python导入模块的3种方式小结

    Python导入模块的3种方式小结

    本文主要介绍了Python导入模块的3种方式小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • python将字母转化为数字实例方法

    python将字母转化为数字实例方法

    在本篇文章里小编给大家整理的是关于python如何将字母转化为数字的相关实例内容,有需要的朋友们可以学习下。
    2019-10-10
  • TensorFlow的自动求导原理分析

    TensorFlow的自动求导原理分析

    这篇文章主要介绍了TensorFlow的自动求导原理分析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • python中requests爬去网页内容出现乱码问题解决方法介绍

    python中requests爬去网页内容出现乱码问题解决方法介绍

    这篇文章主要介绍了python中requests爬去网页内容出现乱码问题解决方法,
    2017-10-10

最新评论