python中pandas操作apply返回多列的实现

 更新时间:2022年08月08日 15:14:35   作者:xiaozheng123121  
本文主要介绍了python中pandas操作apply返回多列的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

我们可以用DataFrame的apply函数实现对多列,多行的操作。

需要记住的是,参数axis设为1是对列进行操作,参数axis设为0是对行操作。默认是对行操作。

apply 返回多列

# height = [70, 90, 100, 120, 140, 160, 180, 200,220,240, 260] # 长度为 11
# df.shape   (1000, 11)
# 对df的每一行的每一个元素操作,然后再返回多列
#----------返回多列-----------------
df = df.apply(lambda x: pd.Series([math.atan(i[0]/(i[1])*180/math.pi for i in zip(height, x)]).astype(float), axis=1)
.rename(columns=dict(zip(list(range(0, 11)), df.columns)))

#df['slope'] = df_10min.apply(lambda x: math.atan(210 / (x['ws_260'] - x['ws_50'] + 1e-7))*180/math.pi, axis=1)
import pandas as pd
df_tmp = pd.DataFrame([
    {"a":"data1", "cnt":100},{"a":"data2", "cnt":200},
])

df_tmp
a    cnt
data1    100
data2    200

方法一:使用apply 的参数result_type 来处理
def formatrow(row):
    a = row["a"] + str(row["cnt"])
    b = str(row["cnt"]) + row["a"]
    return a, b 
 
df_tmp[["fomat1", "format2"]] = df_tmp.apply(formatrow, axis=1, result_type="expand")
df_tmp
a    cnt    fomat1    format2
data1    100    data1100    100data1
data2    200    data2200    200data2

方法一:使用zip打包返回结果来处理
df_tmp["fomat1-1"], df_tmp["format2-2"] = zip(*df_tmp.apply(formatrow, axis=1))
df_tmp
a    cnt    fomat1    format2    fomat1-1    format2-2
data1    100    data1100    100data1    data1100    100data1
data2    200    data2200    200data2    data2200    200data2

生成新列

现在有如下一个DataFrame:

np.random.seed(1)
df = pd.DataFrame(np.random.randn(4,2), columns=['A', 'B'])
df
>>>
       A    B
0    1.624345    -0.611756
1    -0.528172    -1.072969
2    0.865408    -2.301539
3    1.744812    -0.761207

对A, B两列操作,生成C列, 其中C是字符串,由A ± B组成。下面看一下结果就明白了。

df['C'] = df.apply(lambda x: '{:.2f}±{:.2f}'.format(x['A'], x['B']), axis=1)

看一下效果

    A    B    C
0    1.624345    -0.611756    1.62±-0.61
1    -0.528172    -1.072969    -0.53±-1.07
2    0.865408    -2.301539    0.87±-2.30
3    1.744812    -0.761207    1.74±-0.76

多行操作举例

同理可以作用在多行上。

# 对第 10 行进行操作,基于第2、3两行
df.loc[10] = df.apply(lambda x: '{:.2f}±{:.2f}'.format(x[2], x[3]) )

看一下实现的效果

       A    B
0    1.624345    -0.611756
1    -0.528172    -1.072969
2    0.865408    -2.301539
3    1.744812    -0.761207
10    0.87±1.74    -2.30±-0.76

参考链接

[1] pandas的DataFrame使用apply实现对多列,多行操作 2021.12
[2] pandas 的apply返回多列,并赋值 2020.4

到此这篇关于python中pandas操作apply返回多列的实现的文章就介绍到这了,更多相关pandas apply返回多列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python实现简单遗传算法

    python实现简单遗传算法

    这篇文章主要为大家详细介绍了python实现简单的遗传算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • Python标准库pickle的简单使用

    Python标准库pickle的简单使用

    本文主要介绍了Python标准库pickle的简单使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-05-05
  • python GUI库图形界面开发之PyQt5结合Qt Designer创建信号与槽的详细方法与实例

    python GUI库图形界面开发之PyQt5结合Qt Designer创建信号与槽的详细方法与实例

    这篇文章主要介绍了python GUI库图形界面开发之PyQt5结合Qt Designer创建信号与槽的详细方法与实例,需要的朋友可以参考下
    2020-03-03
  • python渗透测试linux密码激活的示例

    python渗透测试linux密码激活的示例

    这篇文章主要介绍了python渗透测试linux密码激活的相关知识,通过一个crypt的示例给大家介绍的非常详细,对大家学习python渗透知识有很大的帮助,需要的朋友可以参考下
    2021-05-05
  • Win10下用Anaconda安装TensorFlow(图文教程)

    Win10下用Anaconda安装TensorFlow(图文教程)

    这篇文章主要介绍了Win10下用Anaconda安装TensorFlow(图文教程),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-06-06
  • 关于Torch torchvision Python版本对应关系说明

    关于Torch torchvision Python版本对应关系说明

    这篇文章主要介绍了关于Torch torchvision Python版本对应关系说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • python因子分析的实例

    python因子分析的实例

    本文主要介绍了python因子分析的实例,这里举一个因子分析的具体的例子, 看一下因子分析是如何进行的,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • 如何利用Tensorflow2进行猫狗分类识别

    如何利用Tensorflow2进行猫狗分类识别

    图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题,下面这篇文章主要给大家介绍了关于如何利用Tensorflow2进行猫狗分类识别的相关资料,需要的朋友可以参考下
    2022-06-06
  • Win10系统下Pytorch环境的搭建过程

    Win10系统下Pytorch环境的搭建过程

    今天给大家带来的是关于Python的相关知识,文章围绕着Win10系统Pytorch环境搭建过程展开,文中有非常详细的介绍及图文示例,需要的朋友可以参考下
    2021-06-06
  • 用python实现打砖块小游戏

    用python实现打砖块小游戏

    这篇文章主要为大家详细介绍了用python实现打砖块小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-05-05

最新评论