Python pandas处理缺失值方法详解(dropna、drop、fillna)

 更新时间:2022年08月16日 09:22:03   作者:墨氲  
缺失数据会在很多数据分析应用中出现,pandas的目标之一就是尽可能无痛地处理缺失值,下面这篇文章主要给大家介绍了关于Python pandas处理缺失值方法的相关资料,处理方法分别是dropna、drop、fillna,需要的朋友可以参考下

面对缺失值三种处理方法:

  • option 1: 去掉含有缺失值的样本(行)
  • option 2:将含有缺失值的列(特征向量)去掉
  • option 3:将缺失值用某些值填充(0,平均值,中值等)

对于dropna和fillna,dataframe和series都有,在这主要讲datafame的

对于option1:

使用DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数说明:

  • axis:
    • axis=0: 删除包含缺失值的行
    • axis=1: 删除包含缺失值的列
  • how: 与axis配合使用
    • how=‘any’ :只要有缺失值出现,就删除该行货列
    • how=‘all’: 所有的值都缺失,才删除行或列
  • thresh: axis中至少有thresh个非缺失值,否则删除
  • 比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行
  • subset: list
  • 在哪些列中查看是否有缺失值
  • inplace: 是否在原数据上操作。如果为真,返回None否则返回新的copy,去掉了缺失值

建议在使用时将全部的缺省参数都写上,便于快速理解

examples:

 	   	      df = pd.DataFrame(
                                        {"name": ['Alfred', 'Batman', 'Catwoman'],         
                                          "toy": [np.nan, 'Batmobile', 'Bullwhip'],
                                         "born": [pd.NaT, pd.Timestamp("1940-04-25")     
                                                        pd.NaT]})
 			>>> df
 			       name        toy       born
 			0    Alfred        NaN        NaT
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT
 			
 			# Drop the rows where at least one element is missing.
 			>>> df.dropna()
 			     name        toy       born
 			1  Batman  Batmobile 1940-04-25
 			
 			# Drop the columns where at least one element is missing.
 			>>> df.dropna(axis='columns')
 			       name
 			0    Alfred
 			1    Batman
 			2  Catwoman
 			
 			# Drop the rows where all elements are missing.
 			>>> df.dropna(how='all')
 			       name        toy       born
 			0    Alfred        NaN        NaT
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT
 			
 			# Keep only the rows with at least 2 non-NA values.
 			>>> df.dropna(thresh=2)
 			       name        toy       born
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT
 			
 			# Define in which columns to look for missing values.
 			>>> df.dropna(subset=['name', 'born'])
 			       name        toy       born
 			1    Batman  Batmobile 1940-04-25
 			
 			# Keep the DataFrame with valid entries in the same variable.	
 			>>> df.dropna(inplace=True)
 			>>> df
 			     name        toy       born
 			1  Batman  Batmobile 1940-04-25

对于option 2:

可以使用dropna 或者drop函数
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

  • labels: 要删除行或列的列表
  • axis: 0 行 ;1 列
	df = pd.DataFrame(np.arange(12).reshape(3,4),                 
	                  columns=['A', 'B', 'C', 'D'])
	
	>>>df
	   	   A  B   C   D
		0  0  1   2   3
		1  4  5   6   7
		2  8  9  10  11

	# 删除列
	>>> df.drop(['B', 'C'], axis=1)
	   A   D
	0  0   3
	1  4   7
	2  8  11
	>>> df.drop(columns=['B', 'C'])
	   A   D
	0  0   3
	1  4   7
	2  8  11
	
	# 删除行(索引)
	>>> df.drop([0, 1])
	   A  B   C   D
	2  8  9  10  11

对于option3

使用DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

  • value: scalar, dict, Series, or DataFrame
  • dict 可以指定每一行或列用什么值填充
  • method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
  • 在列上操作
    • ffill / pad: 使用前一个值来填充缺失值
    • backfill / bfill :使用后一个值来填充缺失值
  • limit 填充的缺失值个数限制。应该不怎么用
f = pd.DataFrame([[np.nan, 2, np.nan, 0],
                   [3, 4, np.nan, 1],
                   [np.nan, np.nan, np.nan, 5],
                   [np.nan, 3, np.nan, 4]],
                   columns=list('ABCD'))
 >>> df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

# 使用0代替所有的缺失值
>>> df.fillna(0)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

# 使用后边或前边的值填充缺失值
>>> df.fillna(method='ffill')
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

>>>df.fillna(method='bfill')
     A	B	C	D
0	3.0	2.0	NaN	0
1	3.0	4.0	NaN	1
2	NaN	3.0	NaN	5
3	NaN	3.0	NaN	4

# Replace all NaN elements in column ‘A', ‘B', ‘C', and ‘D', with 0, 1, 2, and 3 respectively.
# 每一列使用不同的缺失值
>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

#只替换第一个缺失值
 >>>df.fillna(value=values, limit=1)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4

房价分析:

在此问题中,只有bedroom一列有缺失值,按照此三种方法处理代码为:

# option 1 将含有缺失值的行去掉
housing.dropna(subset=["total_bedrooms"])  

# option 2 将"total_bedrooms"这一列从数据中去掉
housing.drop("total_bedrooms", axis=1)  

 # option 3 使用"total_bedrooms"的中值填充缺失值
median = housing["total_bedrooms"].median()
housing["total_bedrooms"].fillna(median) 

sklearn提供了处理缺失值的 Imputer类,具体的使用教程在这:https://www.jb51.net/article/259441.htm

总结

到此这篇关于Python pandas处理缺失值(dropna、drop、fillna)的文章就介绍到这了,更多相关pandas处理缺失值内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python可视化 matplotlib画图使用colorbar工具自定义颜色

    python可视化 matplotlib画图使用colorbar工具自定义颜色

    这篇文章主要介绍了python可视化 matplotlib画图使用colorbar工具自定义颜色,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • OpenCV凸包检测和凸缺陷学习示例

    OpenCV凸包检测和凸缺陷学习示例

    这篇文章主要为大家介绍了OpenCV凸包检测和凸缺陷学习示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • 浅谈如何重构冗长的Python代码

    浅谈如何重构冗长的Python代码

    这篇文章主要介绍了浅谈如何重构冗长的Python代码,编写干净的 Pythonic 代码就是尽可能使其易于理解,但又简洁,过长的代码如何做到简洁高效,需要的朋友可以参考下
    2023-04-04
  • Python实现仿真双径效应的方法

    Python实现仿真双径效应的方法

    双径模型是一种很好的近似,能够准确地反映信号的传播特性。这篇文章主要介绍了Python实现仿真双径效应的方法,感兴趣的小伙伴们可以参考一下
    2021-05-05
  • 不到20行实现Python代码即可制作精美证件照

    不到20行实现Python代码即可制作精美证件照

    这篇文章主要介绍了不到20行实现Python代码即可制作精美证件照,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • 详解Python中位运算的简单实现

    详解Python中位运算的简单实现

    位运算就是直接对整数在内存中对应的二进制位进行操作,一般是将数字化为二进制数后进行操作。本文将利用Python语言实现位运算,感兴趣的可以了解一下
    2022-06-06
  • python中的信号通信 blinker的使用小结

    python中的信号通信 blinker的使用小结

    信号是一种通知或者说通信的方式,信号分为发送方和接收方,信号的特点就是发送端通知订阅者发生了什么,今天通过本文给大家介绍python中的信号通信 blinker的相关知识,感兴趣的朋友一起看看吧
    2021-10-10
  • Python封装adb命令的操作详解

    Python封装adb命令的操作详解

    在日常的 Android 项目开发中,我们通常会使用 adb 命令来获取连接设备的内存、屏幕、CPU等信息,这些信息的获取,每次都在command 中输入相关命令进行重复的操作让人感到厌倦和疲乏,现在,可以尝试使用 python 来简化这一部分工作,所以本文介绍了Python封装adb命令的操作
    2024-01-01
  • win10下安装Anaconda的教程(python环境+jupyter_notebook)

    win10下安装Anaconda的教程(python环境+jupyter_notebook)

    Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。这篇文章主要介绍了win10下安装Anaconda(python环境+jupyter_notebook),需要的朋友可以参考下
    2019-10-10
  • 详解python tkinter包获取本地绝对路径(以获取图片并展示)

    详解python tkinter包获取本地绝对路径(以获取图片并展示)

    这篇文章主要给大家介绍了关于python tkinter包获取本地绝对路径(以获取图片并展示)的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09

最新评论